THERMAL CONDUCTIVITY, ANISOTROPY, AND INTERFACE RESISTANCES OF DIAMOND ON POLY-AlN

被引:0
作者
Bozorg-Grayeli, Elah [1 ]
Li, Zijian [1 ]
Gambin, Vincent [1 ]
Asheghi, Mehdi [1 ]
Goodson, Kenneth E. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
来源
2012 13TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM) | 2012年
关键词
Aluminum nitride; diamond; High Electron Mobility Transistors (HEMT); Thermal Boundary Resistance (TBR); thermal conductivity; Time-Domain Thermoreflectance (TDTR); ALGAN/GAN HEMTS; GAN;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
Due to their high thermal conductivity, diamond substrates are seen as a way to minimize the thermal resistance present in High Electron Mobility Transistor (HEMT) structures based on GaN. Single-crystal AlN transition layers facilitate the growth of high quality GaN on diamond, but such layers may increase the total thermal resistance of the composite substrate. This manuscript measures the thermal conductivity and interface resistance of a 1.4 mu m diamond film on a polycrystalline AlN substrate using picosecond time-domain thermoreflectance (TDTR) and nanosecond thermoreflectance. Varying beam widths are used to extract the thermal conductivity anisotropy of the diamond film.
引用
收藏
页码:1059 / 1064
页数:6
相关论文
共 50 条
  • [21] Effect of B Doping on Thermal Conductivity of Diamond
    Zhao, Yongsheng
    Yan, Fengyun
    Liu, Xue
    Cailiao Daobao/Materials Reports, 2024, 38 (20):
  • [22] Effect of strain on lattice thermal conductivity of diamond
    Zhou, Chang
    Liu, Zi-Jiang
    Dou, Xi-Long
    Wu, Liang
    Guo, Yuan
    Li, Zong-Gang
    Zhang, Cai-Rong
    VACUUM, 2025, 233
  • [23] Influence of isotopic content on diamond thermal conductivity
    Novikov, NV
    Podoba, AP
    Shmegera, SV
    Witek, A
    Zaitsev, AM
    Denisenko, AB
    Fahrner, WR
    Werner, M
    DIAMOND AND RELATED MATERIALS, 1999, 8 (8-9) : 1602 - 1606
  • [24] Significant improvement of thermal conductivity for AlN/LAS composite with low thermal expansion
    Li, Zhenyu
    Wang, Chi
    Xia, Long
    Yang, Hua
    Qin, Chunlin
    Zhong, Bo
    Xiong, Li
    Huang, Xiaoxiao
    Wen, Guangwu
    CERAMICS INTERNATIONAL, 2020, 46 (18) : 28668 - 28675
  • [25] Microstructure and thermal conductivity of nano-carbon/AlN composites
    Ji, Pan
    Lu, Xuefeng
    DIAMOND AND RELATED MATERIALS, 2022, 121
  • [26] Fabrication and Microstructure of Electrically Conductive AlN with High Thermal Conductivity
    Kusunose, Takafumi
    Sekino, Tohru
    Niihara, Koichi
    ADVANCED ENGINEERING CERAMICS AND COMPOSITES, 2011, 484 : 57 - +
  • [27] Effects of debinding condition on thermal conductivity of pressureless sintered AlN
    Kim, Seung-Il
    Go, Shin-Il
    Lee, Seong-Ro
    Lee, Sang-Jin
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2013, 14 (03): : 410 - 414
  • [28] Investigation on Thermal Conductivity of Low Concentration AlN/EG Nanofluids
    Li, Yanjiao
    Liu, Changjiang
    Guo, Zhiqing
    Lv, Qiujuan
    Xie, Fang
    DIGITAL DESIGN AND MANUFACTURING TECHNOLOGY III, 2013, 546 : 112 - 116
  • [29] Thermal Interface Resistance Measurements for GaN-on-Diamond Composite Substrates
    Cho, Jungwan
    Won, Yoonjin
    Francis, Daniel
    Asheghi, Mehdi
    Goodson, Kenneth E.
    2014 IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM (CSICS): INTEGRATED CIRCUITS IN GAAS, INP, SIGE, GAN AND OTHER COMPOUND SEMICONDUCTORS, 2014,
  • [30] Structure and thermal conductivity of powder injection molded AlN ceramic
    Du, Xueli
    Qin, Mingli
    Sun, Yue
    Yuan, Zhihao
    Yang, Baohe
    Qu, Xuanhui
    ADVANCED POWDER TECHNOLOGY, 2010, 21 (04) : 431 - 434