A Fully Autonomous Integrated Interface Circuit for Piezoelectric Harvesters

被引:148
作者
Hehn, Thorsten [1 ]
Hagedorn, Friedrich [1 ]
Maurath, Dominic [1 ]
Marinkovic, Djordje [3 ]
Kuehne, Ingo [4 ]
Frey, Alexander [5 ]
Manoli, Yiannos [2 ]
机构
[1] Univ Freiburg, Fritz Huettinger Chair Microelect, Dept Microsyst Engn, D-79106 Freiburg, Germany
[2] HSG IMIT Inst Micromachining & Informat Technol, Villingen Schwenningen, Germany
[3] Texas Instruments Deutschland GmbH, Freising Weihenstephan, Germany
[4] Siemens AG, Corp Technol, Corp Res & Technol, D-8000 Munich, Germany
[5] Univ Appl Sci Augsburg, Fac Elect Engn, Augsburg, Germany
关键词
Energy harvesting; integrated circuits; piezoelectric generators; self-sufficient; startup; switched power extraction; synchronous electric charge extraction; VIBRATIONS; RECTIFIER; DEVICE;
D O I
10.1109/JSSC.2012.2200530
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a fully autonomous, adaptive pulsed synchronous charge extractor (PSCE) circuit optimized for piezoelectric harvesters (PEHs) which have a wide output voltage range 1.3-20 V. The PSCE chip fabricated in a 0.35 mu m CMOS process is supplied exclusively by the buffer capacitor where the harvested energy is stored in. Due to the low power consumption, the chip can handle a minimum PEH output power of 5.7 mu W. The system performs a startup from an uncharged buffer capacitor and operates in the adaptive mode at storage buffer voltages from 1.4 V to 5 V. By reducing the series resistance losses, the implementation of an improved switching technique increases the extracted power by up to 20% compared to the formerly presented Synchronous Electric Charge Extraction (SECE) technique and enables the chip efficiency to reach values of up to 85%. Compared to a low-voltage-drop passive full-wave rectifier, the PSCE chip increases the extracted power to 123% when the PEH is driven at resonance and to 206% at off-resonance.
引用
收藏
页码:2185 / 2198
页数:14
相关论文
共 29 条
[11]  
Horiuchi T., 2004, P IEEE INT S CIRC SY, V4
[12]  
Junrui Liang, 2009, 2009 International Conference on Information and Automation (ICIA), P945, DOI 10.1109/ICINFA.2009.5205054
[13]   Energy harvesting by implantable abiotically catalyzed glucose fuel cells [J].
Kerzenmacher, S. ;
Ducree, J. ;
Zengerle, R. ;
von Stetten, F. .
JOURNAL OF POWER SOURCES, 2008, 182 (01) :1-17
[14]   Piezoelectric micro-power generation interface circuits [J].
Le, Triet T. ;
Han, Jifeng ;
von Jouanne, Annette ;
Mayaram, Kartikeya ;
Fiez, Terri S. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (06) :1411-1420
[15]   Piezoelectric energy harvesting device optimization by synchronous electric charge extraction [J].
Lefeuvre, E ;
Badel, A ;
Richard, C ;
Guyomar, D .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2005, 16 (10) :865-876
[16]   Active Piezoelectric Energy Harvesting: General Principle and Experimental Demonstration [J].
Liu, Yiming ;
Tian, Geng ;
Wang, Yong ;
Lin, Junhong ;
Zhang, Qiming ;
Hofmann, Heath F. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2009, 20 (05) :575-585
[17]  
Malinowski M, 2007, SENSYS'07: PROCEEDINGS OF THE 5TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, P145
[18]   A New Rectifier and Trigger Circuit for a Piezoelectric Microgenerator [J].
Marinkovic, Djordje ;
Frey, Alexander ;
Kuehne, Ingo ;
Scholl, Gerd .
PROCEEDINGS OF THE EUROSENSORS XXIII CONFERENCE, 2009, 1 (01) :1447-+
[19]   Adaptive piezoelectric energy harvesting circuit for wireless remote power supply [J].
Ottman, GK ;
Hofmann, HF ;
Bhatt, AC ;
Lesieutre, GA .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2002, 17 (05) :669-676
[20]   A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications [J].
Peters, Christian ;
Spreemann, Dirk ;
Ortmanns, Maurits ;
Manoli, Yiannos .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (10)