Thermal Transformation of Molecular Ni2+-N4 Sites for Enhanced CO2 Electroreduction Activity

被引:106
作者
Sa, Young Jin [1 ,5 ]
Jung, Hyejin [1 ]
Shin, Dongyup [2 ]
Jeong, Hu Young [3 ]
Ringe, Stefan [4 ]
Kim, Hyungjun [2 ]
Hwang, Yun Jeong [1 ,6 ]
Joo, Sang Hoon [7 ]
机构
[1] Korea Inst Sci & Technol KIST, Clean Energy Res Ctr, Seoul 02792, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Chem, Daejeon 34141, South Korea
[3] Ulsan Natl Inst Sci & Technol UNIST, UNIST Cent Res Facil, Ulsan 44919, South Korea
[4] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Energy Sci & Engn, Daegu 42988, South Korea
[5] Kwangwoon Univ, Dept Chem, Seoul 01897, South Korea
[6] Yonsei Univ, Yonsei KIST Convergence Res Inst, Dept Chem & Biomol Engn, Seoul 03722, South Korea
[7] Ulsan Natl Inst Sci & Technol UNIST, Dept Chem, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Ni-N/C catalyst; electrochemical CO2 reduction; heat treatment; local structure; oxidation state; EFFICIENT ELECTROCATALYTIC ACTIVITY; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ORGANIC FRAMEWORKS; OXYGEN REDUCTION; SINGLE ATOMS; NICKEL SITES; METAL; SELECTIVITY; CATALYSTS;
D O I
10.1021/acscatal.0c02325
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomically dispersed nickel sites complexed on nitrogen-doped carbon (Ni-N/C) have demonstrated considerable activity for the selective electrochemical carbon dioxide reduction reaction (CO2RR) to CO. However, the high-temperature treatment typically involved during the activation of Ni-N/C catalysts makes the origin of the high activity elusive. In this work, Ni(II) phthalocyanine molecules grafted on carbon nanotube (NiPc/CNT) and heat-treated NiPc/CNT (H-NiPc/CNT) are exploited as model catalysts to investigate the impact of thermal activation on the structure of active sites and CO2RR activity. H-NiPc/CNT exhibits a similar to 4.7-fold higher turnover frequency for CO2RR to CO in comparison to NiPc/CNT. Extended X-ray absorption fine structure analysis and density functional theory (DFT) calculations reveal that the heat treatment transforms the molecular Ni2+-N-4 sites of NiPc into Ni+-N3V (V: vacancy) and Ni+-N-3 sites incorporated in the graphene lattice that concomitantly involves breakage of Ni-N bonding, shrinkage in the Ni-N-C local structure, and decrease in the oxidation state of the Ni center from +2 to +1. DFT calculations combined with microkinetic modeling suggest that the Ni-N3V site appears to be responsible for the high CO2RR activity because of its lower barrier for the formation of * COOH intermediate and optimum *CO binding energy. In situ/operando X-ray absorption spectroscopy analyses further corroborate the importance of reduced Ni+ species in boosting the CO2RR activity.
引用
收藏
页码:10920 / 10931
页数:12
相关论文
共 69 条
[1]   Investigating the Nature of the Active Sites for the CO2 Reduction Reaction on Carbon-Based Electrocatalysts [J].
Asset, Tristan ;
Garcia, Samuel T. ;
Herrera, Sergio ;
Andersen, Nalin ;
Chen, Yechuan ;
Peterson, Eric J. ;
Matanovic, Ivana ;
Artyushkova, Kateryna ;
Lee, Jack ;
Minteer, Shelley D. ;
Dai, Sheng ;
Pan, Xiaoqing ;
Chavan, Kanchan ;
Barton, Scott Calabrese ;
Atanassov, Plamen .
ACS CATALYSIS, 2019, 9 (09) :7668-7678
[2]   Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction [J].
Bagger, Alexander ;
Ju, Wen ;
Varela, Ana Sofia ;
Strasser, Peter ;
Rossmeisl, Jan .
CATALYSIS TODAY, 2017, 288 :74-78
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[5]   X-RAY SPECTROSCOPIC STUDIES OF NICKEL-COMPLEXES, WITH APPLICATION TO THE STRUCTURE OF NICKEL SITES IN HYDROGENASES [J].
COLPAS, GJ ;
MARONEY, MJ ;
BAGYINKA, C ;
KUMAR, M ;
WILLIS, WS ;
SUIB, SL ;
BAIDYA, N ;
MASCHARAK, PK .
INORGANIC CHEMISTRY, 1991, 30 (05) :920-928
[6]   General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities [J].
Fei, Huilong ;
Dong, Juncai ;
Feng, Yexin ;
Allen, Christopher S. ;
Wan, Chengzhang ;
Volosskiy, Boris ;
Li, Mufan ;
Zhao, Zipeng ;
Wang, Yiliu ;
Sun, Hongtao ;
An, Pengfei ;
Chen, Wenxing ;
Guo, Zhiying ;
Lee, Chain ;
Chen, Dongliang ;
Shakir, Imran ;
Liu, Mingjie ;
Hu, Tiandou ;
Li, Yadong ;
Kirkland, Angus I. ;
Duan, Xiangfeng ;
Huang, Yu .
NATURE CATALYSIS, 2018, 1 (01) :63-72
[7]   Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products [J].
Gao, Dunfeng ;
Aran-Ais, Rosa M. ;
Jeon, Hyo Sang ;
Roldan Cuenya, Beatriz .
NATURE CATALYSIS, 2019, 2 (03) :198-210
[8]   Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction [J].
Geng, Zhigang ;
Cao, Yuanjie ;
Chen, Wenxing ;
Kong, Xiangdong ;
Liu, Yan ;
Yao, Tao ;
Lin, Yue .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 240 :234-240
[9]   Catalytic Mechanisms and Design Principles for Single-Atom Catalysts in Highly Efficient CO2 Conversion [J].
Gong, Lele ;
Zhang, Detao ;
Lin, Chun-Yu ;
Zhu, Yonghao ;
Shen, Yang ;
Zhang, Jing ;
Han, Xiao ;
Zhang, Lipeng ;
Xia, Zhenhai .
ADVANCED ENERGY MATERIALS, 2019, 9 (44)
[10]   Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO [J].
Gu, Jun ;
Hsu, Chia-Shuo ;
Bai, Lichen ;
Chen, Hao Ming ;
Hu, Xile .
SCIENCE, 2019, 364 (6445) :1091-+