L2 well-posedness of boundary value problems for parabolic systems with measurable coefficients

被引:20
作者
Auscher, Pascal [1 ,2 ]
Egert, Moritz [1 ]
Nystrom, Kaj [3 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Univ Picardie Jules Verne, UMR 7352, CNRS, Lab Amienois Math Fondamentale & Appl, F-80039 Amiens, France
[3] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
关键词
Second order parabolic systems; parabolic Kato square root estimate; parabolic Dirac operator; Dirichlet and Neumann problems; (non-tangential) maximal functions; square function estimates; a priori representations; boundary layer operators; half-order derivative; LAYER POTENTIALS; ELLIPTIC-OPERATORS; FUNCTIONAL CALCULI; MAXIMAL REGULARITY; DIRAC-OPERATORS; NEUMANN PROBLEM; HEAT-EQUATION; TENT SPACES; INTERPOLATION; SOLVABILITY;
D O I
10.4171/JEMS/980
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the first positive results concerning boundary value problems in the upper half-space for second order parabolic systems only assuming measurability and some transversal regularity in the coefficients of the elliptic part. To do so, we introduce and develop a first order strategy by means of a parabolic Dirac operator at the boundary to obtain, in particular, Green's representation for solutions in natural classes involving square functions and non-tangential maximal functions, well-posedness results with data in L-2-Sobolev spaces together with invertibility of layer potentials, and perturbation results. On the way, we solve the Kato square root problem for parabolic operators with coefficients of the elliptic part depending measurably on all variables. The major new challenge, compared to the earlier results by one of us under time and transversal independence of the coefficients, is to handle non-local half-order derivatives in time which are unavoidable in our situation.
引用
收藏
页码:2943 / 3058
页数:116
相关论文
共 59 条
[1]  
ADAMS D. R., 1996, Grundlehren Math. Wiss., V314, DOI DOI 10.1007/978-3-662-03282-4
[2]   Analyticity of layer potentials and L2 solvability of boundary value problems for divergence form elliptic equations with complex L∞ coefficients [J].
Alfonseca, M. Angeles ;
Auscher, Pascal ;
Axelsson, Andreas ;
Hofmann, Steve ;
Kim, Seick .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4533-4606
[3]  
Amenta A., 2018, CRM MONOGR SER, V37
[4]  
Amenta A, 2014, OPER THEORY ADV APPL, V240, P1
[5]  
[Anonymous], 2001, Classics Math., DOI DOI 10.1007/978-3-642-61798-0
[6]  
[Anonymous], 1974, Matematicheskie Issledovaniya
[7]  
[Anonymous], 2015, THESIS
[8]  
[Anonymous], 2016, MEM SOC MATH FR, DOI DOI 10.24033/MSMF.452
[9]  
[Anonymous], 1976, Grundlehren der Mathematischen Wissenschaften
[10]  
[Anonymous], 1995, Classics in Mathematics