Cover crop mixture diversity, biomass productivity, weed suppression, and stability

被引:63
作者
Florence, A. M. [1 ]
Higley, L. G. [2 ]
Drijber, R. A. [1 ]
Francis, C. A. [1 ]
Lindquist, J. L. [1 ]
机构
[1] Univ Nebraska Lincoln, Dept Agron & Hort, Lincoln, NE 68583 USA
[2] Univ Nebraska Lincoln, Sch Nat Resources, Lincoln, NE 68583 USA
基金
美国国家科学基金会;
关键词
PLANT-SPECIES RICHNESS; BIODIVERSITY; INVASION; INVASIBILITY; RESISTANCE; YIELD; FERTILIZATION; COMMUNITIES; INTERCROPS; DENSITY;
D O I
10.1371/journal.pone.0206195
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The diversity-productivity, diversity-invasibility, and diversity-stability hypotheses propose that increasing species diversity should lead, respectively, to increased average biomass productivity, invasion resistance, and stability. We tested these three hypotheses in the context of cover crop mixtures, evaluating the effects of increasing cover crop mixture diversity on aboveground biomass, weed suppression, and biomass stability. Twenty to forty cover crop treatments were replicated three or four times at eleven sites using eighteen species representing three cover crop species each from six pre-defined functional groups: cool-season grasses, cool-season legumes, cool-season brassicas, warm-season grasses, warm-season legumes, and warm-season broadleaves. Each species was seeded as a pure stand, and the most diverse treatment contained all eighteen species. Remaining treatments included treatments representing intermediate levels of cover crop species and functional richness and a no cover crop control. Cover crop seeding dates ranged from late July to late September with both cover crop and weed aboveground biomass being sampled prior to winterkill. Stability was assessed by evaluating the variability in cover crop biomass for each treatment across plots within each site. While increasing cover crop mixture diversity was associated with increased average aboveground biomass, we assert that this was the result of the average biomass of the pure stands being drawn down by low biomass species rather than due to niche complementarity or increased resource use efficiency. At no site did the highest biomass mixture produce more than the highest biomass pure stand. Furthermore, while increases in cover crop mixture diversity were correlated with increases in weed suppression and biomass stability, we argue that this was largely the result of diversity co-varying with aboveground biomass, and that differences in aboveground biomass rather than differences in diversity drove the differences observed in weed suppression and stability.
引用
收藏
页数:18
相关论文
共 52 条
[1]   High productivity in grassland ecosystems: effected by species diversity or productive species? [J].
Aarssen, LW .
OIKOS, 1997, 80 (01) :183-184
[2]  
Anil L, 1998, GRASS FORAGE SCI, V53, P301, DOI 10.1046/j.1365-2494.1998.00144.x
[3]  
[Anonymous], 2001, ENCY BIODIVERSITY, DOI DOI 10.1016/B0-12-226865-2/00132-2
[4]   Quantifying the evidence for biodiversity effects on ecosystem functioning and services [J].
Balvanera, Patricia ;
Pfisterer, Andrea B. ;
Buchmann, Nina ;
He, Jing-Shen ;
Nakashizuka, Tohru ;
Raffaelli, David ;
Schmid, Bernhard .
ECOLOGY LETTERS, 2006, 9 (10) :1146-1156
[5]  
Betts L., 2013, FARM PROGR
[6]   Seeding Rate and Planting Arrangement Effects on Growth and Weed Suppression of a Legume-Oat Cover Crop for Organic Vegetable Systems [J].
Brennan, Eric B. ;
Boyd, Nathan S. ;
Smith, Richard F. ;
Foster, Phil .
AGRONOMY JOURNAL, 2009, 101 (04) :979-988
[7]   Effects of biodiversity on the functioning of trophic groups and ecosystems [J].
Cardinale, Bradley J. ;
Srivastava, Diane S. ;
Duffy, J. Emmett ;
Wright, Justin P. ;
Downing, Amy L. ;
Sankaran, Mahesh ;
Jouseau, Claire .
NATURE, 2006, 443 (7114) :989-992
[8]   THE FUNCTIONAL ROLE OF PRODUCER DIVERSITY IN ECOSYSTEMS [J].
Cardinale, Bradley J. ;
Matulich, Kristin L. ;
Hooper, David U. ;
Byrnes, Jarrett E. ;
Duffy, Emmett ;
Gamfeldt, Lars ;
Balvanera, Patricia ;
O'Connor, Mary I. ;
Gonzalez, Andrew .
AMERICAN JOURNAL OF BOTANY, 2011, 98 (03) :572-592
[9]  
Clark A., 2007, MANAGING COVER CROPS, VThird
[10]  
deLaplante K, 2011, HBK PHILOS SCI, V11, P169