Testing simple polygons

被引:2
作者
Arkin, EM
Belleville, P
Mitchell, JSB
Mount, D
Romanik, K
Salzberg, S
Souvaine, D
机构
[1] UNIV BRITISH COLUMBIA,DEPT COMP SCI,VANCOUVER,BC V6T 1Z4,CANADA
[2] UNIV MARYLAND,DEPT COMP SCI,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,CTR AUTOMAT RES,COLLEGE PK,MD 20742
[4] JOHNS HOPKINS UNIV,DEPT COMP SCI,BALTIMORE,MD 21218
[5] RUTGERS STATE UNIV,DEPT COMP SCI,NEW BRUNSWICK,NJ 08903
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1997年 / 8卷 / 02期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
testing; verifying; probing;
D O I
10.1016/S0925-7721(96)00015-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of verifying a simple polygon in the plane using ''test points''. A test point is a geometric probe that takes as input a point in Euclidean space, and returns ''+'' if the point is inside the object being probed or ''-'' if it is outside. A verification procedure takes as input a description of a target object, including its location and orientation, and it produces a set of test paints that are used to verify whether a test object matches the description. We give a procedure for verifying an n-sided, non-degenerate, simple target polygon using 5n test points. This testing strategy works even if the test polygon has n + 1 vertices, and we show a lower bound of 3n + 1 test points for this case. We also give algorithms using O(n) test points for simple polygons that may be degenerate and for test polygons that may have up to n + 2 vertices. All of these algorithms work for polygons with holes. We also discuss extensions of our results to higher dimensions. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 12 条
[1]  
Belleville P., 1993, Computational Geometry: Theory and Applications, V2, P255, DOI 10.1016/0925-7721(93)90022-X
[2]   SHAPE FROM PROBING [J].
COLE, R ;
YAP, CK .
JOURNAL OF ALGORITHMS, 1987, 8 (01) :19-38
[3]  
KARL WC, 1991, THESIS MIT BOSTON
[4]  
Lyons K. A., 1994, Visual Computer, V10, P452, DOI 10.1007/BF01910635
[5]  
MITCHELL JSB, 1990, WORKSH GEOM PROB COM
[6]   TESTING GEOMETRIC OBJECTS [J].
ROMANIK, K ;
SMITH, C .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (03) :157-176
[7]   TESTING ORTHOGONAL SHAPES [J].
ROMANIK, K ;
SALZBERG, S .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1995, 5 (01) :33-49
[8]  
ROMANIK K, CSTR2947172ACSTR9289
[9]  
ROMANIK K, 1992, THESIS U MARYLAND CO
[10]  
Rudin W., 1986, Real and Complex Analysis, V3rd