Efficient computation of smoothing splines via adaptive basis sampling

被引:26
作者
Ma, Ping [1 ]
Huang, Jianhua Z. [2 ]
Zhang, Nan [2 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Bayesian confidence interval; Core-mantle boundary; Nonparametric regression; Penalized least squares; Reproducing kernel Hilbert space; Sampling; PENALIZED LIKELIHOOD REGRESSION; NOISY DATA;
D O I
10.1093/biomet/asv009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n(3)). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.
引用
收藏
页码:631 / 645
页数:15
相关论文
共 36 条
[1]  
[Anonymous], 1977, Lecture notes in Mathematics
[2]  
[Anonymous], 2003, Semiparametric Regression
[3]  
[Anonymous], REGRESSION GRAPHICS
[4]  
[Anonymous], 1974, Variational methods for eigenvalue approximation
[5]  
[Anonymous], 2013, Smoothing Spline ANOVA Models
[6]  
[Anonymous], 1996, Numerical methods for unconstrained optimization and nonlinear equations
[7]   Asymptotic properties of penalized spline estimators [J].
Claeskens, Gerda ;
Krivobokova, Tatyana ;
Opsomer, Jean D. .
BIOMETRIKA, 2009, 96 (03) :529-544
[8]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[9]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[10]  
Golub GH., 1989, MATRIX COMPUTATIONS, DOI DOI 10.56021/9781421407944