A GLOBAL STABILITY RESULT FOR AN N-SPECIES LOTKA-VOLTERRA FOOD CHAIN SYSTEM WITH DISTRIBUTED TIME DELAYS

被引:0
作者
Saito, Yasuhisa [1 ]
机构
[1] Shizuoka Univ, Fac Engn, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan
关键词
Lotica-Volterra; distributed delays; food chain; global asymptotic stability; Liapunov functional;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a sufficient condition for the global stability of an n-species Lotka-Volterra food chain system with distributed time delays. The result is sharp in the sense that it coincides with a necessary and sufficient condition for global stability when n = 2.
引用
收藏
页码:771 / 777
页数:7
相关论文
共 9 条
[1]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74
[2]   Diagonal dominance and harmless off-diagonal delays [J].
Hofbauer, J ;
So, JWH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) :2675-2682
[3]  
HOFBAUER J, 1988, DYNAMICAL SYSTEMS TH
[4]  
Kuang Y, 1993, Mathematics in Science and Engineering
[5]   Necessary and sufficient conditions for permanence and global stability of a Lotka-Volterra system with two delays [J].
Saito, Y ;
Hara, T ;
Ma, WB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (02) :534-556
[6]   Permanence and global stability for general Lotka-Volterra predator-prey systems with distributed delays [J].
Saito, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6157-6168
[7]  
Saito Y., 2003, FIELDS I COMMUNICATI, V36, P105
[8]  
Takeuchi Y., 1996, GLOBAL DYNAMICAL PRO
[9]  
WENG XQ, 1991, J MATH ANAL APPL, V160, P51