Detwinning process of martensite in Ni58Mn25Ga17 as a high temperature shape memory alloy under uniaxial compression

被引:17
作者
Dai, Yanchao [1 ]
Hou, Long [1 ]
Fautrelle, Yves [2 ]
Li, Zongbin [3 ]
Esling, Claude [4 ]
Ren, Zhongming [1 ]
Li, Xi [1 ,2 ]
机构
[1] Shanghai Univ, State Key Lab Adv Special Steels, Shanghai 200072, Peoples R China
[2] EPM Madylam, ENSHMG BP, F-38402 St Martin Dheres, France
[3] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Liaoning, Peoples R China
[4] Univ Lorraine, Lab Etud Microstruct & Mecan Mat LEM3, CNRS, UMR 7239, F-57045 Metz, France
关键词
Ni-Mn-Ga alloy; Precipitate; Uniaxial compression; Detwinning; Electron backscatter diffraction (EBSD); MN-GA MARTENSITE; TWIN BOUNDARY MOBILITY; PHASE-TRANSFORMATION; CONSTITUTIVE MODEL; SINGLE-CRYSTAL; STRAIN; MICROSTRUCTURE; COMPOSITE; EVOLUTION; TEXTURE;
D O I
10.1016/j.ijplas.2018.01.013
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Ni-rich Ni-Mn-Ga alloy as a high temperature shape memory alloy has been directionally solidified, which is consisted of non-modulated (NM) martensite with preferred orientation and gamma precipitate with a three dimensional net structure. The detwinning process of Ni58Mn25Ga17 alloy was investigated under step-wise uniaxial compression with a cumulative strain of 2.5%, 5.5%, 12.9% and 30.2%, respectively. It has been captured how the hierarchically structured marten site variants reorient and the effect of the surrounding gamma phase on detwinning process with the increase of compression strain. It can be found that the volume fraction of the original minor lamella gradually increases and then it occupies the whole plate. The detwinning of new microtwins is not observed during further compression. The results indicate that the move of the intra-plate boundaries is attributed to a higher Schmid factor of the nanotwins. The mobility of the new inter-plate boundary is mainly dependent on the preferred orientation of the lamella inside martensite variants. The present study provides useful insights for microstructure training in high temperature shape memory alloys including martensite and gamma phase.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 37 条
[1]   Microstructure of precipitates and magnetic domain structure in an annealed Co38Ni33Al29 shape memory alloy [J].
Bartova, B. ;
Wiese, N. ;
Schryvers, D. ;
Chapman, J. N. ;
Ignacova, S. .
ACTA MATERIALIA, 2008, 56 (16) :4470-4476
[2]   Stress-induced martensitic transformation, twin boundary mobility and elastic properties of vapor deposited Fe70Pd30 ferromagnetic shape memory alloy thin films [J].
Bischoff, A. J. ;
Landgraf, A. ;
Mayr, S. G. .
SCRIPTA MATERIALIA, 2016, 111 :76-80
[3]   Thermal stability of high-temperature Ni-Mn-Ga alloys [J].
Cesari, E. ;
Font, J. ;
Muntasell, J. ;
Ochin, P. ;
Pons, J. ;
Santamarta, R. .
SCRIPTA MATERIALIA, 2008, 58 (04) :259-262
[4]   Large tensile superelasticity from intermartensitic transformations in Ni49Mn28Ga23 single crystal [J].
Chernenko, V. A. ;
Villa, E. ;
Salazar, D. ;
Barandiaran, J. M. .
APPLIED PHYSICS LETTERS, 2016, 108 (07)
[5]   Properties of Co-alloyed Ni-Fe-Ga Ferromagnetic Shape Memory Alloys [J].
Chernenko, V. A. ;
Oikawa, K. ;
Chmielus, M. ;
Besseghini, S. ;
Villa, E. ;
Albertini, F. ;
Righi, L. ;
Paoluzi, A. ;
Muellner, P. ;
Kainuma, R. ;
Ishida, K. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2009, 18 (5-6) :548-553
[6]   Orientation relationship between austenite and non-modulated martensite in Ni-Mn-Ga single crystals [J].
Chulist, R. ;
Faryna, M. ;
Szczerba, M. J. .
ACTA MATERIALIA, 2016, 103 :836-843
[7]   Characterization of mobile type I and type II twin boundaries in 10M modulated Ni-Mn-Ga martensite by electron backscatter diffraction [J].
Chulist, R. ;
Straka, L. ;
Lanska, N. ;
Soroka, A. ;
Sozinov, A. ;
Skrotzki, W. .
ACTA MATERIALIA, 2013, 61 (06) :1913-1920
[8]   Change in microstructure during training of a Ni50Mn29Ga21 bicrystal [J].
Chulist, R. ;
Skrotzki, W. ;
Oertel, C. -G. ;
Boehm, A. ;
Poetschke, M. .
SCRIPTA MATERIALIA, 2010, 63 (05) :548-551
[9]  
Cui YJ, 2017, INT J PLASTICITY, V99, P1, DOI [10.1016/j.ilplas.2017.08.002, 10.1016/j.ijplas.2017.08.002]
[10]   Martensitic transition, structure and magnetic anisotropy of martensite in Ni-Mn-Sn single crystal [J].
Czaja, P. ;
Szczerba, M. J. ;
Chulist, R. ;
Balanda, M. ;
Przewoznik, J. ;
Chumlyakov, Y. I. ;
Schell, N. ;
Kapusta, Cz. ;
Maziarz, W. .
ACTA MATERIALIA, 2016, 118 :213-220