RGB-D Object Recognition based on RGBD-PCANet Learning

被引:0
作者
Sun, Shiying [1 ,2 ]
Zhao, Xiaoguang [1 ]
An, Ning [1 ,2 ]
Tan, Min [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA) | 2017年
基金
中国国家自然科学基金;
关键词
RGB-D Object recognition; PCANet; deep learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a simple deep learning method namely RGBD-PCANet is proposed for object recognition effectively. The proposed method extends the original PCANet for RGB-D images. Firstly, the RGB and depth images are preprocessed to meet the requirement of the network input layer. Secondly, features of RGB-D images are extracted by the two stages RGBD-PCANet which consists of cascaded PCA, binary hashing, and block-wise histograms. Finally, the SVM method is used as classifier. We evaluate the proposed method on the popular Washington RGB-D Object dataset. Extensive experiments demonstrate that the proposed RGBD-PCANet method achieves comparable performance to state-of-the-art CNN-based methods and the runtimes are low without GPU acceleration.
引用
收藏
页码:1075 / 1080
页数:6
相关论文
共 28 条
[1]  
[Anonymous], 2012, P 26 ANN C NEUR PROC, DOI DOI 10.1002/2014GB005021
[2]   Subset based deep learning for RGB-D object recognition [J].
Bai, Jing ;
Wu, Yan ;
Zhang, Junming ;
Chen, Fuqiang .
NEUROCOMPUTING, 2015, 165 :280-292
[3]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[4]  
Blum M, 2012, IEEE INT CONF ROBOT, P1298, DOI 10.1109/ICRA.2012.6225188
[5]  
Bo L., 2013, EXPT ROBOTICS, P387, DOI DOI 10.1007/978-3-319-00065-7
[6]  
Bo LF, 2011, IEEE INT C INT ROBOT, P821, DOI 10.1109/IROS.2011.6048717
[7]  
Browatzki B., 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), P1189, DOI 10.1109/ICCVW.2011.6130385
[8]   PCANet: A Simple Deep Learning Baseline for Image Classification? [J].
Chan, Tsung-Han ;
Jia, Kui ;
Gao, Shenghua ;
Lu, Jiwen ;
Zeng, Zinan ;
Ma, Yi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5017-5032
[9]  
Chen C., 2015, P 7 IEEE C INT MULT
[10]  
Eitel A, 2015, IEEE INT C INT ROBOT, P681, DOI 10.1109/IROS.2015.7353446