Segmentation of images by color features: A survey

被引:136
作者
Garcia-Lamont, Farid [1 ]
Cervantes, Jair [1 ]
Lopez, Asdrubal [2 ]
Rodriguez, Lisbeth [3 ]
机构
[1] Univ Autonoma Estado Mexico, Ctr Univ UAEM Texcoco, Av Jardin Zumpango S-N, Texcoco 56259, Estado De Mexic, Mexico
[2] Univ Autonoma Estado Mexico, Ctr Univ UAEM Zumpango, Camino Viejo Jilotzingo Continuac Calle Rayon, Zumpango 55600, Estado De Mexic, Mexico
[3] Inst Tecnol Orizaba, Div Invest & Estudios Posgrad, Av Oriente 9,852 Col Emiliano Zapata, Orizaba Veracruz 94320, Mexico
关键词
Color spaces; Image segmentation; Quantitative evaluation; FUZZY C-MEANS; MINIMUM CROSS-ENTROPY; NEURAL-NETWORKS; UNSUPERVISED SEGMENTATION; AUTOMATIC SEGMENTATION; PALMPRINT RECOGNITION; LIVER SEGMENTATION; EFFICIENT METHOD; AERIAL IMAGES; ALGORITHM;
D O I
10.1016/j.neucom.2018.01.091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 198 条
[71]   CTex - An adaptive unsupervised segmentation algorithm based on color-texture coherence [J].
Ilea, Dana E. ;
Whelan, Paul F. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (10) :1926-1939
[72]   An image segmentation method using histograms and the human characteristics of HSI color space for a scene image [J].
Ito S. ;
Yoshioka M. ;
Omatu S. ;
Kita K. ;
Kugo K. .
Artificial Life and Robotics, 2006, 10 (1) :6-10
[73]  
Janakirama S., 2012, PIXEL FOREFINGER GRA, V11, P9, DOI [10.3923/itj.2012.9.19, DOI 10.3923/ITJ.2012.9.19]
[74]   Fuzzy c-means clustering with weighted image patch for image segmentation [J].
Ji, Zexuan ;
Xia, Yong ;
Chen, Qiang ;
Sun, Quansen ;
Xia, Deshen ;
Feng, David Dagan .
APPLIED SOFT COMPUTING, 2012, 12 (06) :1659-1667
[75]   SOM ensemble-based image segmentation [J].
Jiang, Y ;
Zhou, ZH .
NEURAL PROCESSING LETTERS, 2004, 20 (03) :171-178
[76]   Optic Disk and Cup Segmentation From Monocular Color Retinal Images for Glaucoma Assessment [J].
Joshi, Gopal Datt ;
Sivaswamy, Jayanthi ;
Krishnadas, S. R. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (06) :1192-1205
[77]   An improved snake model for automatic extraction of buildings from urban aerial images and LiDAR data [J].
Kabolizade, Mostafa ;
Ebadi, Hamid ;
Ahmadi, Salman .
COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2010, 34 (05) :435-441
[78]  
Kang SD, 2007, LECT NOTES COMPUT SC, V4705, P372
[79]  
Kanganami H.G., 2011, INT J DIGITAL CONTEN, V5, P112
[80]   A NEW METHOD FOR GRAY-LEVEL PICTURE THRESHOLDING USING THE ENTROPY OF THE HISTOGRAM [J].
KAPUR, JN ;
SAHOO, PK ;
WONG, AKC .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1985, 29 (03) :273-285