Segmentation of images by color features: A survey

被引:136
作者
Garcia-Lamont, Farid [1 ]
Cervantes, Jair [1 ]
Lopez, Asdrubal [2 ]
Rodriguez, Lisbeth [3 ]
机构
[1] Univ Autonoma Estado Mexico, Ctr Univ UAEM Texcoco, Av Jardin Zumpango S-N, Texcoco 56259, Estado De Mexic, Mexico
[2] Univ Autonoma Estado Mexico, Ctr Univ UAEM Zumpango, Camino Viejo Jilotzingo Continuac Calle Rayon, Zumpango 55600, Estado De Mexic, Mexico
[3] Inst Tecnol Orizaba, Div Invest & Estudios Posgrad, Av Oriente 9,852 Col Emiliano Zapata, Orizaba Veracruz 94320, Mexico
关键词
Color spaces; Image segmentation; Quantitative evaluation; FUZZY C-MEANS; MINIMUM CROSS-ENTROPY; NEURAL-NETWORKS; UNSUPERVISED SEGMENTATION; AUTOMATIC SEGMENTATION; PALMPRINT RECOGNITION; LIVER SEGMENTATION; EFFICIENT METHOD; AERIAL IMAGES; ALGORITHM;
D O I
10.1016/j.neucom.2018.01.091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 198 条
[91]   A Hybrid Multiview Stereo Algorithm for Modeling Urban Scenes [J].
Lafarge, Florent ;
Keriven, Renaud ;
Bredif, Mathieu ;
Hoang-Hiep Vu .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) :5-17
[92]   Multiple moving object segmentation using motion orientation histogram in adaptively partitioned blocks for high-resolution video surveillance systems [J].
Lee, Seungwon ;
Kim, Nahyun ;
Jeong, Kyungwon ;
Paek, Inho ;
Hong, Hyunki ;
Paik, Joonki .
OPTIK, 2015, 126 (19) :2063-2069
[93]   A COMPARATIVE PERFORMANCE STUDY OF SEVERAL GLOBAL THRESHOLDING TECHNIQUES FOR SEGMENTATION [J].
LEE, SU ;
CHUNG, SY ;
PARK, RH .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1990, 52 (02) :171-190
[94]   Color measurement in L*a*b* units from RGB digital images [J].
Leon, Katherine ;
Mery, Domingo ;
Pedreschi, Franco ;
Leon, Jorge .
FOOD RESEARCH INTERNATIONAL, 2006, 39 (10) :1084-1091
[95]   Locally linear discriminant embedding: An efficient method for face recognition [J].
Li, Bo ;
Zheng, Chun-Hou ;
Huang, De-Shuang .
PATTERN RECOGNITION, 2008, 41 (12) :3813-3821
[96]   MINIMUM CROSS ENTROPY THRESHOLDING [J].
LI, CH ;
LEE, CK .
PATTERN RECOGNITION, 1993, 26 (04) :617-625
[97]   Distance Regularized Level Set Evolution and Its Application to Image Segmentation [J].
Li, Chunming ;
Xu, Chenyang ;
Gui, Changfeng ;
Fox, Martin D. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (12) :3243-3254
[98]   Object-oriented classification of high-resolution remote sensing imagery based on an improved colour structure code and a support vector machine [J].
Li, Haitao ;
Gu, Haiyan ;
Han, Yanshun ;
Yang, Jinghui .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (06) :1453-1470
[99]  
Li Jin, 2011, 2011 6th International Forum on Strategic Technology (IFOST 2011), P836, DOI 10.1109/IFOST.2011.6021150
[100]   Multi-task ranking SVM for image cosegmentation [J].
Liang, Xianpeng ;
Zhu, Lin ;
Huang, De-Shuang .
NEUROCOMPUTING, 2017, 247 :126-136