Segmentation of images by color features: A survey

被引:136
作者
Garcia-Lamont, Farid [1 ]
Cervantes, Jair [1 ]
Lopez, Asdrubal [2 ]
Rodriguez, Lisbeth [3 ]
机构
[1] Univ Autonoma Estado Mexico, Ctr Univ UAEM Texcoco, Av Jardin Zumpango S-N, Texcoco 56259, Estado De Mexic, Mexico
[2] Univ Autonoma Estado Mexico, Ctr Univ UAEM Zumpango, Camino Viejo Jilotzingo Continuac Calle Rayon, Zumpango 55600, Estado De Mexic, Mexico
[3] Inst Tecnol Orizaba, Div Invest & Estudios Posgrad, Av Oriente 9,852 Col Emiliano Zapata, Orizaba Veracruz 94320, Mexico
关键词
Color spaces; Image segmentation; Quantitative evaluation; FUZZY C-MEANS; MINIMUM CROSS-ENTROPY; NEURAL-NETWORKS; UNSUPERVISED SEGMENTATION; AUTOMATIC SEGMENTATION; PALMPRINT RECOGNITION; LIVER SEGMENTATION; EFFICIENT METHOD; AERIAL IMAGES; ALGORITHM;
D O I
10.1016/j.neucom.2018.01.091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 198 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Shadow detection in very high spatial resolution aerial images: A comparative study [J].
Adeline, K. R. M. ;
Chen, M. ;
Briottet, X. ;
Pang, S. K. ;
Paparoditis, N. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 80 :21-38
[3]   Self-Organizing Map based Extended Fuzzy C-Means (SEEFC) algorithm for image segmentation [J].
Aghajari, Ebrahim ;
Chandrashekhar, Gharpure Damayanti .
APPLIED SOFT COMPUTING, 2017, 54 :347-363
[4]   Segmentation Based Classification of 3D Urban Point Clouds: A Super-Voxel Based Approach with Evaluation [J].
Aijazi, Ahmad Kamal ;
Checchin, Paul ;
Trassoudaine, Laurent .
REMOTE SENSING, 2013, 5 (04) :1624-1650
[5]   Hill-manipulation: An effective algorithm for color image segmentation [J].
Al Aghbari, Zaher ;
Al-Haj, Ruba .
IMAGE AND VISION COMPUTING, 2006, 24 (08) :894-903
[6]  
Alenya G., 2011, 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), P3408, DOI 10.1109/ICRA.2011.5980092
[7]  
Alvarado-Cervantes R, 2010, LECT NOTES COMPUT SC, V6419, P319
[8]  
[Anonymous], 2005, PROC CVPR IEEE
[9]  
[Anonymous], 2017, INT J LIGHT ELECT OP
[10]  
[Anonymous], 2000, HDB IMAGE VIDEO PROC