A note on weighted Bergman spaces and the Cesaro operator (vol 159, pg 25, 2000)

被引:20
作者
Chang, DC [1 ]
Stevic, S
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Serbian Acad Sci, Inst Math, Yu-11000 Belgrade, Serbia Monteneg
关键词
D O I
10.1017/S0027763000009193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H(D-n) be the space of holomorphic functions on the unit polydisk D-n, and let L-alpha(p,q) (D-n), where p, q > 0, alpha = (alpha(1),..., alpha(n)) with alpha(j) > -1, j = 1,..., n, be the class of all measurable functions f defined on D-n such that [GRAPHICS] where M-p(f,r) denote the p-integral means of the function f. Denote the weighted Bergman space on D-n by A(alpha)(p,q) (D-n) = L-alpha(p,q) (D-n) boolean AND H (D-n). We provide a characterization for a function f being in A(alpha)(p,q) (D-n). Using the characterization we prove the following result: Let p > 1, then the Cesaro operator is bounded on the space A(alpha)(p,p) (D-n).
引用
收藏
页码:77 / 90
页数:14
相关论文
共 8 条
[1]  
[Anonymous], COMPLEX VARIABLES TH
[2]   A note on weighted Bergman spaces and the Cesaro operator [J].
Benke, G ;
Chang, DC .
NAGOYA MATHEMATICAL JOURNAL, 2000, 159 :25-43
[3]  
Siskakis AG., 2000, ACTA SCI MATH, V66, P651
[4]  
STEvia S., 2003, ACTA SCI MATH, V69, P109
[5]  
Stevic S, 2004, HOUSTON J MATH, V30, P511
[6]   Cesaro averaging operators [J].
Stevic, S .
MATHEMATISCHE NACHRICHTEN, 2003, 248 :185-189
[7]   Weighted integrals of harmonic functions [J].
Stevic, S .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2002, 39 (1-2) :87-96
[8]  
STEVIC S, 2004, COMPLEX VARIABLES, V49, P109