Markov's theorem in 3-manifolds

被引:53
作者
Lambropoulou, S
Rourke, CP
机构
[1] UNIV GOTTINGEN,MATH INST,D-37073 GOTTINGEN,GERMANY
[2] UNIV CAMBRIDGE,DPMMS,CAMBRIDGE CB2 1SB,ENGLAND
[3] UNIV WARWICK,INST MATH,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
关键词
knot; link; isotopy; braid; Markov equivalence; L-move; knot complement; mixed diagram; 3-manifold; band move;
D O I
10.1016/S0166-8641(96)00151-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first give a one-move version of Markov's braid theorem for knot isotopy in S-3 that sharpens the classical theorem. Then we give a relative version of Markov's theorem concerning a fixed braided portion in the knot. We also prove an analogue of Markov's theorem for knot isotopy in knot complements. Finally we extend this last result to prove a Markov theorem for links in an arbitrary orientable 3-manifold. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:95 / 122
页数:28
相关论文
共 25 条
  • [1] ALEXANDER JW, 1927, ANN MATH, V2, P563
  • [2] BENNEQUIN D., 1983, ASTERISQUE, p[107, 83]
  • [3] Birman J. S., 1976, ANN MATH STUD, V82
  • [4] Burde G, 1985, DEGRUYTER STUD MATH, V5
  • [5] GECK M, 1995, MATH GOTTINGENSIS, V25
  • [6] GECK M, 1997, J REINE ANGEW MATH, V482
  • [7] LAMBROPOULOU S, UNPUB BRAID STRUCTUR
  • [8] Lambropoulou S., 1994, P C QUANT TOP
  • [9] LAMBROPOULOU S, 1992, MARKOVS THEOREM
  • [10] Lambropoulou S, 1990, SHORT PROOFS ALEXAND