Some controllability results for the N-dimensional Navier-Stokes and Boussinesq systems with N-1 scalar controls

被引:64
作者
Fernández-Cara, E
Guerrero, S
Imanuvilov, OY
Puel, JP
机构
[1] Univ Seville, Dept EDAN, E-41080 Seville, Spain
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[3] Univ Versailles, Lab Math Appl, F-78035 Versailles, France
关键词
Navier-Stokes system; exact controllability; Carleman inequalities;
D O I
10.1137/04061965X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we deal with some controllability problems for systems of the Navier Stokes and Boussinesq kind with distributed controls supported in small sets. Our main aim is to control N-dimensional systems ( N + 1 scalar unknowns in the case of the Navier - Stokes equations) with N - 1 scalar control functions. In a first step, we present some global Carleman estimates for suitable adjoint problems of linearized Navier - Stokes and Boussinesq systems. In this way, we obtain null controllability properties for these systems. Then, we deduce results concerning the local exact controllability to the trajectories. We also present ( global) null controllability results for some ( truncated) approximations of the Navier - Stokes equations.
引用
收藏
页码:146 / 173
页数:28
相关论文
共 16 条
[1]  
Alekseev V.M., 1987, Contemporary Soviet Mathematics
[2]  
[Anonymous], 1996, LECT NOTES SERIES
[3]  
[Anonymous], LECT NOTES PURE APPL
[4]  
[Anonymous], 1996, ESAIM CONTR OPTIM CA, DOI DOI 10.1051/COCV:1996102
[5]  
AUBIN JP, 1984, LANALYSE LINEAIRE MO
[6]  
Fabre C., 1995, ESAIM. Control, Optimisation and Calculus of Variations, V1, P267, DOI 10.1051/cocv:1996109
[7]   APPROXIMATE CONTROLLABILITY OF THE SEMILINEAR HEAT-EQUATION [J].
FABRE, C ;
PUEL, JP ;
ZUAZUA, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 :31-61
[8]   Local exact controllability of the Navier-Stokes system [J].
Fernández-Cara, E ;
Guerrero, S ;
Imanuvilov, OY ;
Puel, JP .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (12) :1501-1542
[9]  
FERNANDEZCARA E, IN PRESS SIAM J CONT
[10]   Local exact controllability of the two-dimensional Navier-Stokes equations [J].
Fursikov, AV ;
Emanuilov, OY .
SBORNIK MATHEMATICS, 1996, 187 (9-10) :1355-1390