Hybrid inorganic-organic composite nanoparticles from crosslinkable polyfluorenes

被引:13
作者
Behrendt, Jonathan M. [1 ]
Foster, Andrew B. [1 ]
McCairn, Mark C. [1 ]
Willcock, Helen [2 ]
O'Reilly, Rachel K. [2 ]
Turner, Michael L. [1 ]
机构
[1] Univ Manchester, Manchester M13 9PL, Lancs, England
[2] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
LIGHT-EMITTING-DIODES; PHOTOPHYSICAL PROPERTIES; POLYMER BLENDS; STABILITY; PHASE; MORPHOLOGY; DOTS;
D O I
10.1039/c3tc30266k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polyfluorenes with pendant alkoxysilyl groups have been used to prepare inorganic-organic composite nanoparticles (diameter 80-220 nm) in which the conjugated polymer is dispersed within a silica matrix. Preparation of these nanoparticles is achieved by simultaneous nanoprecipitation of the conjugated polymer and hydrolysis/crosslinking of the alkoxysilyl groups under basic conditions. The composition of the nanocomposites is controlled by addition of an alkoxysilane monomer, tetramethylorthosilicate. The hybrid nanoparticles form highly stable dispersions in water and buffer (pH 9.2). The size of the nanoparticles can be tuned by varying the amount of the alkoxysilane monomer added during the nanoprecipitation process. Increasing the relative amount of alkoxysilane monomer also increases the proportion of polyfluorene chains that adopt the higher energy beta-phase conformation within the resultant nanoparticles. Nanoparticles with the highest silica content were found to have increased photoluminescence quantum yields. This work provides a controllable method for optimisation of the photophysical properties of light-emitting conjugated polymer nanoparticles via a simple aqueous processing technique.
引用
收藏
页码:3297 / 3304
页数:8
相关论文
共 40 条
[1]   Quantum dot solar cells [J].
Aroutiounian, V ;
Petrosyan, S ;
Khachatryan, A ;
Touryan, K .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2268-2271
[2]   Fluorescent nanoparticles from PEGylated polyfluorenes [J].
Behrendt, Jonathan M. ;
Wang, Yun ;
Willcock, Helen ;
Wall, Laura ;
McCairn, Mark C. ;
O'Reilly, Rachel K. ;
Turner, Michael L. .
POLYMER CHEMISTRY, 2013, 4 (05) :1333-1336
[3]  
Bernius MT, 2000, ADV MATER, V12, P1737, DOI 10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO
[4]  
2-N
[5]   High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy [J].
Biagioni, P. ;
Celebrano, M. ;
Zavelani-Rossi, M. ;
Polli, D. ;
Labardi, M. ;
Lanzani, G. ;
Cerullo, G. ;
Finazzi, M. ;
Duo, L. .
APPLIED PHYSICS LETTERS, 2007, 91 (19)
[6]   Polyfluorenes without monoalkylfluorene defects [J].
Cho, Sung Yong ;
Grimsdale, Andrew C. ;
Jones, David J. ;
Watkins, Scott E. ;
Holmes, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (39) :11910-+
[7]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803
[8]   Improving color purity and stability in a blue emitting polyfluorene by monomer purification [J].
Craig, MR ;
de Kok, MM ;
Hofstraat, JW ;
Schenning, APHJ ;
Meijer, EW .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (12) :2861-2862
[9]   Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings [J].
Duan, Hongwei ;
Nie, Shuming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (11) :3333-3338
[10]   Chain confinement promotes β-phase formation in polyfluorene-based photoluminescent ionogels [J].
Evans, Rachel C. ;
Marr, Patricia C. .
CHEMICAL COMMUNICATIONS, 2012, 48 (31) :3742-3744