Electrochemical properties of CoFe2O4 nanoparticles as negative and Co(OH)2 and Co2Fe(CN)6 as positive electrodes for supercapacitors

被引:53
作者
Shanmugavani, A. [1 ]
Kalpana, D. [2 ]
Selvan, R. Kalai [1 ]
机构
[1] Bharathiar Univ, Dept Phys, Solid State Ion & Energy Devices Lab, Coimbatore 641046, Tamil Nadu, India
[2] Cent Electrochem Res Inst, Madras Unit, Madras 600113, Tamil Nadu, India
关键词
Oxides; Chemical synthesis; Electrochemical measurements; Electrical properties; Electrochemical properties; LI+ ION INSERTION; CHEMICAL-SYNTHESIS; TIO2; ANATASE; PERFORMANCE; FABRICATION; NANOSHEETS; COMPOSITE; CAPACITOR; MNFE2O4; NANOSPHERES;
D O I
10.1016/j.materresbull.2015.04.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cobalt ferrite nanoparticles are synthesized by facile combustion method using aspartic acid and glycine as fuels in three different pH conditions (5, 7 and 10) and employed as a negative electrode for supercapacitors. For positive electrodes, Co(OH)(2) and Co2Fe(CN)(6) particles are prepared by wet chemical method and studied its structural and morphological features. The electrochemical properties revealed that the aspartic acid assisted CoFe2O4 (CA7) negative electrode exhibits an enhanced specific capacitance of 758.86 F g(-1) at 2 mV s(-1) in 1 M KOH. Similarly, the galvanostatic charge-discharge analysis (GCD) shows a specific capacitance of 356 Fg(-1) at 1 mA cm(-2). On the other hand, Co(OH)2 and Co2Fe(CN)6 shows the specific capacitance of 932 and 817 Fg-1 at 2 mV s-1 respectively. Interestingly, the fabricated asymmetric supercapacitors, CoFe2O4 parallel to AC, CoFe2O4 parallel to Co(OH)(2) and CoFe2O4 parallel to Co2Fe(CN)(6) provides the specific capacitance of 339, 127 and 125 F g(-1) at 1 mV s(-1) in 1 M KOH, respectively. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 45 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]   Comparison of the Electrochemical Performance of NiMoO4 Nanorods and Hierarchical Nanospheres for Supercapacitor Applications [J].
Cai, Daoping ;
Wang, Dandan ;
Liu, Bin ;
Wang, Yanrong ;
Liu, Yuan ;
Wang, Lingling ;
Li, Han ;
Huang, Hui ;
Li, Qiuhong ;
Wang, Taihong .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (24) :12905-12910
[3]   Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes [J].
Chen, Po-Chiang ;
Shen, Guozhen ;
Shi, Yi ;
Chen, Haitian ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (08) :4403-4411
[4]   Electrochemical Performances of Nanoparticle Fe3O4/Activated Carbon Supercapacitor Using KOH Electrolyte Solution [J].
Du, Xuan ;
Wang, Chengyang ;
Chen, Mingming ;
Jiao, Yang ;
Wang, Jin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (06) :2643-2646
[5]   Inkjet-Printed Flexible Graphene-Based Supercapacitor [J].
Ervin, Matthew H. ;
Le, Linh T. ;
Lee, Woo Y. .
ELECTROCHIMICA ACTA, 2014, 147 :610-616
[6]   Plasma formation and temperature measurement during single-bubble cavitation [J].
Flannigan, DJ ;
Suslick, KS .
NATURE, 2005, 434 (7029) :52-55
[7]   Using sonochemistry for the fabrication of nanomaterials [J].
Gedanken, A .
ULTRASONICS SONOCHEMISTRY, 2004, 11 (02) :47-55
[8]   Preparation of CTAB-Assisted Hexagonal Platelet Co(OH)2/Graphene Hybrid Composite as Efficient Supercapacitor Electrode Material [J].
Ghosh, Debasis ;
Giri, Soumen ;
Das, Chapal Kumar .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (09) :1135-1142
[9]   Electrochemical capacitive properties of spray-pyrolyzed copper-ferrite thin films [J].
Ham, Dukho ;
Chang, Jinho ;
Pathan, S. H. ;
Kim, W. Y. ;
Mane, R. S. ;
Pawar, B. N. ;
Joo, Oh-Shim ;
Chung, Hoeil ;
Yoon, Moon-Young ;
Han, Sung-Hwan .
CURRENT APPLIED PHYSICS, 2009, 9 :S98-S100
[10]   SPECTRUM OF SYNCHRONOUS PICOSECOND SONOLUMINESCENCE [J].
HILLER, R ;
PUTTERMAN, SJ ;
BARBER, BP .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1182-1184