Using a spatially structured life cycle model to assess the influence of multiple stressors on an exploited coastal-nursery-dependent population

被引:28
作者
Archambault, B. [1 ,2 ]
Rivot, E. [1 ]
Savina, M. [3 ]
Le Pape, O. [1 ]
机构
[1] ESE Ecol & Sante Ecosyst, UMR 985, Agrocampus Ouest, F-35042 Rennes, France
[2] AgroParisTech, F-75005 Paris, France
[3] IFREMER, Channel & North Sea Fisheries Dept, 150 Quai Gambetta,BP 699, F-62321 Boulogne Sur Mer, France
关键词
Life cycle model; Spatial processes; Metapopulation; Coastal nursery habitat degradation; Fishing; Solea; Multiple stressors; Scenarios; SOLE SOLEA-SOLEA; ESSENTIAL FISH HABITAT; CLIMATE VARIABILITY; STOCK ASSESSMENT; MARINE FISHES; MANAGEMENT; QUALITY; CONSEQUENCES; CONNECTIVITY; DEGRADATION;
D O I
10.1016/j.ecss.2015.12.009
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Exploited coastal-nursery-dependent fish species are subject to various stressors occurring at specific stages of the life cycle: climate-driven variability in hydrography determines the success of the first eggs/larvae stages; coastal nursery habitat suitability controls juvenile growth and survival; and fisheries target mostly adults. A life cycle approach was used to quantify the relative influence of these stressors on the Eastern English Channel (EEC) population of the common sole (Solea solea), a coastal-nursery dependent flatfish population which sustains important fisheries. The common sole has a complex life cycle: after eggs hatch, larvae spend several weeks drifting in open water. Survivors go on to metamorphose into benthic fish. Juveniles spend the first two years of their life in coastal and estuarine nurseries. Close to maturation, they migrate to deeper areas, where different subpopulations supplied by different nurseries reproduce and are exploited by fisheries. A spatially structured age-and stage-based hierarchical Bayesian model integrating various aspects of ecological knowledge, data sources and expert knowledge was built to quantitatively describe this complex life cycle. The model included the low connectivity among three subpopulations in the EEC, the influence of hydrographic variability, the availability of suitable juvenile habitat and fisheries. Scenarios were designed to quantify the effects of interacting stressors on population renewal. Results emphasized the importance of coastal nursery habitat availability and quality for the population renewal. Realistic restoration scenarios of the highly degraded Seine estuary produced a two-third increase in catch potential for the adjacent subpopulation. Fisheries, however, remained the main source of population depletion. Setting fishing mortality to the maximum sustainable yield led to substantial increases in biomass (+100%) and catch (+33%) at the EEC scale. The approach also showed how climate-driven variability in hydrography is likely to interact with human pressures, e.g., overfishing increased the sensitivity to unfavourable conditions. Our results provided insights into the dynamics of numerous exploited coastal-nursery-dependent species while paving the way toward more robust advice for sustainable management of these resources. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:95 / 104
页数:10
相关论文
共 66 条
  • [41] The food limitation hypothesis for juvenile marine fish
    Le Pape, Olivier
    Bonhommeau, Sylvain
    [J]. FISH AND FISHERIES, 2015, 16 (03) : 373 - 398
  • [42] Climate variability, fish, and fisheries
    Lehodey, P.
    Alheit, J.
    Barange, M.
    Baumgartner, T.
    Beaugrand, G.
    Drinkwater, K.
    Fromentin, J. -M.
    Hare, S. R.
    Ottersen, G.
    Perry, R. I.
    Roy, C.
    Van Der Lingen, C. D.
    Werner, F.
    [J]. JOURNAL OF CLIMATE, 2006, 19 (20) : 5009 - 5030
  • [43] Habitat triage for exploited fishes: Can we identify essential "Essential Fish Habitat?"
    Levin, PS
    Stunz, GW
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2005, 64 (01) : 70 - 78
  • [44] Modeling the effects of fishing and implications for the design of marine protected areas: Juvenile fish responses to variations in seafloor habitat
    Lindholm, JB
    Auster, PJ
    Ruth, M
    Kaufman, L
    [J]. CONSERVATION BIOLOGY, 2001, 15 (02) : 424 - 437
  • [45] How do demersal fishing fleets interact with aggregate extraction in a congested sea?
    Marchal, Paul
    Desprez, Michel
    Vermard, Youen
    Tidd, Alex
    [J]. ESTUARINE COASTAL AND SHELF SCIENCE, 2014, 149 : 168 - 177
  • [46] Parent E., 2012, INTRO HIERARCHICAL B
  • [47] Estimated enhancement of fish production resulting from restoring oyster reef habitat: quantitative valuation
    Peterson, CH
    Grabowski, JH
    Powers, SP
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2003, 264 : 249 - 264
  • [48] How does fishing alter marine populations and ecosystems sensitivity to climate?
    Planque, Benjamin
    Fromentin, Jean-Marc
    Cury, Philippe
    Drinkwater, Kenneth F.
    Jennings, Simon
    Perry, R. Ian
    Kifani, Souad
    [J]. JOURNAL OF MARINE SYSTEMS, 2010, 79 (3-4) : 403 - 417
  • [49] Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes
    Poertner, Hans-O.
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2012, 470 : 273 - 290
  • [50] Fisheries stock assessment and decision analysis: The Bayesian approach
    Punt, AE
    Hilborn, R
    [J]. REVIEWS IN FISH BIOLOGY AND FISHERIES, 1997, 7 (01) : 35 - 63