The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in Rd, d ≥ 3

被引:44
作者
Blanchet, Adrien [1 ]
Laurencot, Philippe [2 ]
机构
[1] Univ Toulouse, TSE GREMAQ, CNRS UMR 5604, INRA UMR 1291, F-31000 Toulouse, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS UMR 5219, F-31000 Toulouse, France
关键词
Chemotaxis; Degenerate diffusion; Keller-Segel model; Minimizing scheme; Wasserstein distance; 35K65; 35K40; 47J30; 35Q92; 35B33; GLOBAL EXISTENCE; STEEPEST DESCENT; KINETIC-THEORY; CRITICAL MASS; EQUATIONS; MODEL;
D O I
10.1080/03605302.2012.757705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that, for the parabolic-elliptic Keller-Segel system with critical porous-medium diffusion in dimension d , d3 (also referred to as the quasilinear Smoluchowski-Poisson equation), there is a critical value of the chemotactic sensitivity (measuring in some sense the strength of the drift term) above which there are solutions blowing up in finite time and below which all solutions are global in time. This global existence result is shown to remain true for the parabolic-parabolic Keller-Segel system with critical porous-medium type diffusion in dimension d , d3, when the chemotactic sensitivity is below the same critical value. The solution is constructed by using a minimizing scheme involving the Monge-Kantorovich metric for the first component and the L2-norm for the second component. The cornerstone of the proof is the derivation of additional estimates based on a method due to [22].
引用
收藏
页码:658 / 686
页数:29
相关论文
共 34 条
[1]  
Ambrosio L., 2008, Lectures in Mathematics ETH Zurich
[2]   A gradient flow approach to an evolution problem arising in superconductivity [J].
Ambrosio, Luigi ;
Serfaty, Sylvia .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (11) :1495-1539
[3]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[4]   Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion [J].
Bedrossian, Jacob ;
Rodriguez, Nancy ;
Bertozzi, Andrea L. .
NONLINEARITY, 2011, 24 (06) :1683-1714
[5]   Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis [J].
Biler, Piotr ;
Corrias, Lucilla ;
Dolbeault, Jean .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :1-32
[6]  
Blanchet A., SEMIN EQU D IN PRESS
[7]   Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model [J].
Blanchet, Adrien ;
Carlen, Eric A. ;
Carrillo, Jose A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) :2142-2230
[8]   Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model [J].
Blanchet, Adrien ;
Calvez, Vincent ;
Carrillo, Jose A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :691-721
[9]   Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions [J].
Blanchet, Adrien ;
Carrillo, Jose A. ;
Laurencot, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) :133-168
[10]  
Calvez V, 2008, COMMUN MATH SCI, V6, P417