Universal integrability objects

被引:23
作者
Boos, H. [1 ]
Goehmann, F. [1 ]
Kluemper, A. [1 ]
Nirov, Kh. S. [1 ,2 ]
Razumov, A. V. [3 ,4 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany
[2] RAS, Inst Nucl Res, Moscow 117901, Russia
[3] Inst High Energy Phys, Protvino, Moscow Oblast, Russia
[4] Max Planck Inst Math, D-53111 Bonn, Germany
基金
俄罗斯基础研究基金会;
关键词
integrable system; quantum group; representation; functional relation; CONFORMAL FIELD-THEORY; QUANTIZED AFFINE ALGEBRAS; R-MATRIX; BAXTER EQUATION; SPIN CHAINS; Q-OPERATOR; WEYL GROUP; ANALOG; REPRESENTATIONS; PARAMETER;
D O I
10.1007/s11232-013-0002-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the main points of the quantum group approach in the theory of quantum integrable systems and illustrate them for the case of the quantum group U-q(L(sl (2) )). We give a complete set of the functional relations correcting inexactitudes in the previous considerations. We especially attend to the interrelation of the representations used to construct the universal transfer operators and Q-operators.
引用
收藏
页码:21 / 39
页数:19
相关论文
共 46 条
[1]   Quantum group representations and the Baxter equation [J].
Antonov, A ;
Feigin, B .
PHYSICS LETTERS B, 1997, 392 (1-2) :115-122
[2]  
Antonov A., 1996, ARXIVHEPTH9603105V2
[3]  
Antonov A. V., 1996, ARXIVHEPTH9607031V1
[4]   Quantum Volterra model and the universal R-matrix [J].
Antonov, AV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 113 (03) :1520-1529
[5]  
Bazhanov V. V., 2001, ARXIVHEPTH0105177V3
[6]  
Bazhanov V. V., 1998, ARXIVHEPTH9805008V2
[7]  
Bazhanov V. V., 1994, ARXIVHEPTH9412229V1
[8]  
Bazhanov V. V., 2008, ARXIV08054274V3HEPTH
[9]  
Bazhanov V. V., 2010, ARXIV10053261V3HEPTH
[10]  
Bazhanov V. V., 1996, ARXIVHEPTH9604044V2