Latitudinal patterns of phenology and age-specific thermal performance across six Coenagrion damselfly species

被引:16
作者
Nilsson-Ortman, Viktor [1 ]
Stoks, Robby [2 ]
De Block, Marjan [2 ]
Johansson, Frank [1 ,3 ]
机构
[1] Umea Univ, Dept Ecol & Environm Sci, SE-90187 Umea, Sweden
[2] Univ Louvain, Lab Aquat Ecol & Evolutionary Biol, BE-3000 Louvain, Belgium
[3] Uppsala Univ, Dept Ecol & Genet, SE-75236 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
acclimation; acclimatization; climate change; developmental plasticity; growth rate; life history; optimality theory; reaction norm; thermal sensitivity; thermal variability; SIZE-STRUCTURED INTERACTIONS; LIFE-HISTORY; REACTION NORMS; PHENOTYPIC PLASTICITY; TEMPERATURE-ACCLIMATION; CLIMATE-CHANGE; GROWTH; EVOLUTION; RESPONSES; CANNIBALISM;
D O I
10.1890/12-1383.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Using a combination of computer simulations and laboratory experiments we test if the thermal sensitivity of growth rates change during ontogeny in damselfly larvae and if these changes can be predicted based on the natural progression of average temperature or thermal variability in the field. The laboratory experiment included replicated species from Southern, Central, and Northern Europe. Although annual fluctuations in temperature represent a key characteristic of temperate environments, few studies of thermal performance have considered the ecological importance of the studied traits within a seasonal context. Instead, thermal performance is assumed to remain constant throughout ontogeny and to reflect selection acting over the whole life cycle. The laboratory experiment revealed considerable variation among species in the strength and direction of ontogenetic performance shifts. In four species from Southern and Central Europe, reaction norms were steepest during early ontogeny, becoming less steep during later ontogenetic stages (indicative of low-temperature acclimation). In one Northern European species, the slope of reaction norms did not change during ontogeny. In the other North European species, reaction norms became steeper during ontogeny (indicative of high-temperature acclimation). We had expected high-latitude species to show strong low-temperature acclimation responses, because they have a short flight season and inhabit a strongly seasonal environment. Instead, we found the reversed pattern: Low-latitude species displayed strong low-temperature acclimation responses, and high-latitude species displayed weak, or even reversed, acclimation responses to low temperatures. These findings suggest that low-temperature acclimation may be less beneficial and possibly more costly in habitats with rapid seasonal transitions in average temperature. We conclude that thermal performance traits are more dynamic than typically assumed and caution against using results from single ontogenetic stages to predict species' responses to changing environmental conditions.
引用
收藏
页码:491 / 510
页数:20
相关论文
共 111 条
  • [1] Thermodynamic Effects on Organismal Performance: Is Hotter Better?
    Angilletta, Michael J., Jr.
    Huey, Raymond B.
    Frazier, Melanie R.
    [J]. PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY, 2010, 83 (02): : 197 - 206
  • [2] Coadaptation: A unifying principle in evolutionary thermal biology
    Angilletta, MJ
    Bennett, AF
    Guderley, H
    Navas, CA
    Seebacher, F
    Wilson, RS
    [J]. PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY, 2006, 79 (02): : 282 - 294
  • [3] Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1
  • [4] Tradeoffs and the evolution of thermal reaction norms
    Angilletta, MJ
    Wilson, RS
    Navas, CA
    James, RS
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2003, 18 (05) : 234 - 240
  • [5] CANNIBALISM AND EARLY INSTAR SURVIVAL IN A LARVAL DAMSELFLY
    ANHOLT, BR
    [J]. OECOLOGIA, 1994, 99 (1-2) : 60 - 65
  • [6] [Anonymous], 2008, R LANG ENV STAT COMP
  • [7] Thermodynamic Effects on the Evolution of Performance Curves
    Asbury, Dee A.
    Angilletta, Michael J., Jr.
    [J]. AMERICAN NATURALIST, 2010, 176 (02) : E40 - E49
  • [8] Askew R., 2004, The Dragonflies of Europe
  • [9] The hot and the cold: unravelling the variable response of plant respiration to temperature
    Atkin, OK
    Bruhn, D
    Hurry, VM
    Tjoelker, MG
    [J]. FUNCTIONAL PLANT BIOLOGY, 2005, 32 (02) : 87 - 105
  • [10] CONDITION AND SIZE OF DAMSELFLIES - A FIELD-STUDY OF FOOD LIMITATION
    BAKER, RL
    [J]. OECOLOGIA, 1989, 81 (01) : 111 - 119