Grain Growth in Nanocrystalline Mg-Al Thin Films

被引:7
作者
Kruska, Karen [1 ]
Rohatgi, Aashish [1 ]
Vemuri, Rama S. [2 ]
Kovarik, Libor [2 ]
Moser, Trevor H. [2 ]
Evans, James E. [2 ]
Browning, Nigel D. [3 ]
机构
[1] Pacific Northwest Natl Lab, Energy & Environm Directorate, POB 999, Richland, WA 99352 USA
[2] Pacific Northwest Natl Lab, Environm & Mol Sci Lab, POB 999, Richland, WA 99352 USA
[3] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2017年 / 48A卷 / 12期
关键词
AZ31 MAGNESIUM ALLOY; KINETICS; EVOLUTION; AZ91;
D O I
10.1007/s11661-017-4350-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing similar to 10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 degrees C, 200 degrees C, and 300 degrees C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7 +/- 2 and the activation energy for grain growth was 31.1 +/- 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems. (C) The Minerals, Metals & Materials Society and ASM International 2017
引用
收藏
页码:6118 / 6125
页数:8
相关论文
共 50 条
[21]   Divorced Eutectic Solidification of Mg-Al Alloys [J].
Monas, Alexander ;
Shchyglo, Oleg ;
Kim, Se-Jong ;
Yim, Chang Dong ;
Hoeche, Daniel ;
Steinbach, Ingo .
JOM, 2015, 67 (08) :1805-1811
[22]   Grain growth in nanocrystalline copper thin films investigated by non-ambient X-ray diffraction measurements [J].
Kuru, Y. ;
Wohlschloegel, M. ;
Welzel, U. ;
Mittemeijer, E. J. .
POWDER DIFFRACTION, 2009, 24 (02) :85-88
[23]   Influence of the temperature and duration of the annealing on the lattice structure and growth of the Mg-Al spinel layer [J].
Zhang, Hailiang ;
Zhang, Mingfu ;
Han, Jiecai ;
Ying, Guobing ;
Guo, Huaixin ;
Xu, Chenghai ;
Shen, Haitao ;
Song, Ningning .
APPLIED SURFACE SCIENCE, 2011, 257 (11) :5012-5016
[24]   An explanation of hillock growth in thin Al films [J].
Raic, K. T. .
SURFACE ENGINEERING, 2016, 32 (11) :823-828
[25]   Interface mixing and hydrogen absorption in Pd/Mg and Pd/Al/Mg thin films [J].
Pacanowski, S. ;
Wachowiak, M. ;
Jablonski, B. ;
Szymanski, B. ;
Smardz, L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (01) :806-813
[26]   Grain growth in thin films - When the third dimension matters [J].
Zoellner, Dana ;
Pantleon, Wolfgang .
COMPUTATIONAL MATERIALS SCIENCE, 2025, 258
[27]   Waste Mg-Al based alloys for hydrogen storage [J].
Hardian, R. ;
Pistidda, C. ;
Chaudhary, A-L. ;
Capurso, G. ;
Gizer, G. ;
Cao, H. ;
Milanese, C. ;
Girella, A. ;
Santoru, A. ;
Yigit, D. ;
Dieringa, H. ;
Kainer, K. U. ;
Klassen, T. ;
Dornheim, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (34) :16738-16748
[28]   On the stagnation of grain growth in nanocrystalline materials [J].
Li, Junjie ;
Wang, Jincheng ;
Yang, Gencang .
SCRIPTA MATERIALIA, 2009, 60 (11) :945-948
[29]   The interrelated effect of activation energy and grain boundary energy on grain growth in nanocrystalline materials [J].
Chen, Z. ;
Liu, F. ;
Yang, X. Q. ;
Chen, Y. Z. ;
Yang, C. I. ;
Yang, G. C. ;
Zhou, Y. H. .
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2013, 104 (09) :817-822
[30]   Stress-driven grain growth in ultrafine grained Mg thin film [J].
Zhang, Y. ;
Sharon, J. A. ;
Hu, G. L. ;
Ramesh, K. T. ;
Hemker, K. J. .
SCRIPTA MATERIALIA, 2013, 68 (06) :424-427