The integrability problem for a class of planar systems

被引:80
作者
Algaba, A. [1 ]
Gamero, E. [2 ]
Garcia, C. [1 ]
机构
[1] Univ Huelva, Fac Ciencias, Dept Math, Huelva, Spain
[2] Univ Seville, Dept Appl Math 2, ESI, Seville, Spain
关键词
NORMAL FORMS; EQUIVALENCE; POINTS;
D O I
10.1088/0951-7715/22/2/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider perturbations of quasi-homogeneous planar Hamiltonian systems, where the Hamiltonian function does not contain multiple factors. It is important to note that the most interesting cases (linear saddle, linear centre, nilpotent case, etc) fall into this category. For such kinds of systems, we characterize the integrability problem, by connecting it with the normal form theory.
引用
收藏
页码:395 / 420
页数:26
相关论文
共 16 条
[1]   An algorithm for computing quasi-homogeneous formal normal forms under equivalence [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (03) :335-359
[2]   Quasi-homogeneous normal forms [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) :193-216
[3]  
ALGABA A, POLYNOMIAL INT UNPUB
[4]   TOPOLOGICAL EQUIVALENCE OF A PLANE VECTOR FIELD WITH ITS PRINCIPAL PART DEFINED THROUGH NEWTON POLYHEDRA [J].
BRUNELLA, M ;
MIARI, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (02) :338-366
[5]  
Bruno A.D., 1989, Local Methods in Nonlinear Differential Equations
[6]  
Bruno A.D., 2000, Power Geometry in Algebraic and Differential Equations
[7]   Local analytic integrability for nilpotent centers [J].
Chavarriga, J ;
Giacomin, H ;
Giné, J ;
Llibre, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :417-428
[8]  
Dumortier F., 1991, Structures in Dynamics, Finite Dimensional Deterministic Studies, Vvol 2, P161
[9]   The focus-centre problem for a type of degenerate system [J].
Gasull, A ;
Llibre, J ;
Mañosa, V ;
Mañosas, F .
NONLINEARITY, 2000, 13 (03) :699-729
[10]   Monodromy and stability of a class of degenerate planar critical points [J].
Gasull, A ;
Mañosa, V ;
Mañosas, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (01) :169-190