Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller

被引:21
作者
Wang Dong-Feng [1 ]
Zhang Jin-Ying [1 ]
Wang Xiao-Yan [1 ]
机构
[1] North China Elect Power Univ, Hebei Engn Res Ctr Simulat & Optimized Control Po, Baoding 071003, Peoples R China
关键词
fractional-order chaotic system; synchronization; terminal sliding mode control; uncertainty; disturbance; DESIGN;
D O I
10.1088/1674-1056/22/4/040507
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
引用
收藏
页数:7
相关论文
共 49 条
[1]  
Caponetto R, 2010, FRACTIONAL ORDER SYS, P62
[2]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[3]   Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty [J].
Dadras, Sara ;
Momeni, Hamid Reza .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) :367-377
[4]   Theory of fractional order in generalized thermoelectric MHD [J].
Ezzat, Magdy A. .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (10) :4965-4978
[5]   Modified impulsive synchronization of fractional order hyperchaotic systems [J].
Fu Jie ;
Yu Miao ;
Ma Tie-Dong .
CHINESE PHYSICS B, 2011, 20 (12)
[6]   Chaos in a fractional order modified Duffing system [J].
Ge, Zheng-Ming ;
Ou, Chan-Yi .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :262-291
[7]  
HE DR, 2009, COMPLEX SYSTEMS COMP, P1
[8]   Holder continuity of generalized chaos synchronization in complex networks [J].
Hu Ai-Hua ;
Xu Zhen-Yuan ;
Guo Liu-Xiao .
CHINESE PHYSICS B, 2011, 20 (09)
[9]   Mechanical Analogies of Fractional Elements [J].
Hu Kai-Xin ;
Zhu Ke-Qin .
CHINESE PHYSICS LETTERS, 2009, 26 (10)
[10]   Communication scheme via cascade chaotic systems [J].
Hua, CC ;
Guan, XP .
CHINESE PHYSICS LETTERS, 2004, 21 (08) :1441-1444