Federated Learning on Distributed Medical Records for Detection of Lung Nodules

被引:19
作者
Baheti, Pragati [1 ]
Sikka, Mukul [1 ]
Arya, K., V [1 ]
Rajesh, R. [1 ]
机构
[1] ABV Indian Inst Informat Technol & Management Gwa, Gwalior 474015, India
来源
VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP | 2020年
关键词
Federated Learning; Distributed Database; Decentralized training; Electronic Medical Records; Blockchain;
D O I
10.5220/0009144704450451
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this work, the concept of federated Learning is applied on medical records of CT scans images for detection of pulmonary lung nodules. Instead of using the naive ways, the authors have come up with decentralizing the training technique by bringing the model to the data rather than accumulating the data at a central place and thus maintaining differential privacy of the records. The training on distributed electronic medical records includes two models: detection of location of nodules and its confirmation. The experiments have been carried out on CT scan images from LIDC dataset and the results shows that the proposed method outperformed the existing methods in terms of detection accuracy.
引用
收藏
页码:445 / 451
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 2013, Int. J. Eng. Technol
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Federated learning of predictive models from federated Electronic Health Records [J].
Brisimi, Theodora S. ;
Chen, Ruidi ;
Mela, Theofanie ;
Olshevsky, Alex ;
Paschalidis, Ioannis Ch. ;
Shi, Wei .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2018, 112 :59-67
[4]   Automated detection of lung nodules in CT images using shape-based genetic algorithm [J].
Dehmeshki, Jamshid ;
Ye, Xujiong ;
Lin, Xinyu ;
Valdivieso, Manho ;
Amin, Hamdan .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) :408-417
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]  
Juan, 2014, IPFS CONTENT ADDRESS
[7]  
Kim H., 2019, IEEE COMMUNICATIONS
[8]  
Konecny J., 2016, P NIPS WORKSH PRIV M
[9]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[10]   A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification [J].
Murphy, K. ;
van Ginneken, B. ;
Schilham, A. M. R. ;
de Hoop, B. J. ;
Gietema, H. A. ;
Prokop, M. .
MEDICAL IMAGE ANALYSIS, 2009, 13 (05) :757-770