Federated Learning on Distributed Medical Records for Detection of Lung Nodules

被引:13
作者
Baheti, Pragati [1 ]
Sikka, Mukul [1 ]
Arya, K., V [1 ]
Rajesh, R. [1 ]
机构
[1] ABV Indian Inst Informat Technol & Management Gwa, Gwalior 474015, India
来源
VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP | 2020年
关键词
Federated Learning; Distributed Database; Decentralized training; Electronic Medical Records; Blockchain;
D O I
10.5220/0009144704450451
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this work, the concept of federated Learning is applied on medical records of CT scans images for detection of pulmonary lung nodules. Instead of using the naive ways, the authors have come up with decentralizing the training technique by bringing the model to the data rather than accumulating the data at a central place and thus maintaining differential privacy of the records. The training on distributed electronic medical records includes two models: detection of location of nodules and its confirmation. The experiments have been carried out on CT scan images from LIDC dataset and the results shows that the proposed method outperformed the existing methods in terms of detection accuracy.
引用
收藏
页码:445 / 451
页数:7
相关论文
共 12 条
  • [1] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [2] Benet J., 2014, Technical Report Draft, V3
  • [3] Federated learning of predictive models from federated Electronic Health Records
    Brisimi, Theodora S.
    Chen, Ruidi
    Mela, Theofanie
    Olshevsky, Alex
    Paschalidis, Ioannis Ch.
    Shi, Wei
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2018, 112 : 59 - 67
  • [4] Automated detection of lung nodules in CT images using shape-based genetic algorithm
    Dehmeshki, Jamshid
    Ye, Xujiong
    Lin, Xinyu
    Valdivieso, Manho
    Amin, Hamdan
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) : 408 - 417
  • [5] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [6] Kim H., 2019, IEEE COMMUNICATIONS
  • [7] Konecn J., 2016, WORKSH PRIV MULT MAC
  • [8] V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
    Milletari, Fausto
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 565 - 571
  • [9] A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification
    Murphy, K.
    van Ginneken, B.
    Schilham, A. M. R.
    de Hoop, B. J.
    Gietema, H. A.
    Prokop, M.
    [J]. MEDICAL IMAGE ANALYSIS, 2009, 13 (05) : 757 - 770
  • [10] Multi-institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation
    Sheller, Micah J.
    Reina, G. Anthony
    Edwards, Brandon
    Martin, Jason
    Bakas, Spyridon
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 92 - 104