MULTIVARIATE WEIGHTED KANTOROVICH OPERATORS

被引:4
作者
Acu, Ana-Maria [1 ]
Hodis, Laura [2 ]
Rasa, Ioan [2 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, RO-550012 Sibiu, Romania
[2] Tech Univ Cluj Napoca, Fac Automat & Comp Sci, Dept Math, Str Memorandumului 28, Cluj Napoca, Romania
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2020年 / 3卷 / 02期
关键词
Multidimensional Kantorovich operators; invariant probability measure; iterates of operators; approximation process; Bernstein polynomials; APPROXIMATION;
D O I
10.3934/mfc.2020009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, some weighted Durrmeyer type operators were used as research tools in Learning Theory. In this paper we introduce a class of multidimensional weighted Kantorovich operators K-n on C(Q(d)) where Q(d) is the d-dimensional hypercube [0; 1](d). We show that each Kn has a unique invariant probability measure and determine this measure. Then, using results from approximation theory and the theory of ergodic operators, we find the limit of the iterates of K-n and give rates of convergence of the iterates toward the limit. Finally, we show that some Kantorovich type operators previously investigated in literature fall into the class of operators introduced in our paper. Other properties and applications, involving Learning Theory, will be presented in a forthcoming paper, where we will consider also operators on spaces of Lebesgue integrable functions on the hypercube Q(d).
引用
收藏
页码:117 / 124
页数:8
相关论文
共 21 条
[1]   CLASSICAL KANTOROVICH OPERATORS REVISITED [J].
Acu, A. -M. ;
Gonska, H. .
UKRAINIAN MATHEMATICAL JOURNAL, 2019, 71 (06) :843-852
[2]  
Acu A.-M., ITERATES CONVO UNPUB
[3]   Approximation properties of λ-Kantorovich operators [J].
Acu, Ana-Maria ;
Manav, Nesibe ;
Sofonea, Daniel Florin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[4]  
Altomare F, 2014, DEGRUYTER STUD MATH, V61, P1
[5]  
Altomare F., 1994, DE GRUYTER STUDIES I, V17
[6]  
Altomare F., 2012, Boll. U. M. I Serie 9, V5, P1
[7]   Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators [J].
Altomare, Francesco ;
Cappelletti Montano, Mirella ;
Leonessa, Vita ;
Rasa, Ioan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) :153-173
[8]   A GENERALIZATION OF KANTOROVICH OPERATORS FOR CONVEX COMPACT SUBSETS [J].
Altomare, Francesco ;
Cappelletti Montano, Mirella ;
Leonessa, Vita ;
Rasa, Ioan .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (03) :591-614
[9]   Pointwise convergence of the Bernstein-Durrmeyer operators with respect to a collection of measures [J].
Berdysheva, Elena E. ;
Heilmann, Margareta ;
Hennings, Katharina .
JOURNAL OF APPROXIMATION THEORY, 2020, 251
[10]   Multivariate Bernstein-Durrmeyer operators with arbitrary weight functions [J].
Berdysheva, Elena E. ;
Jetter, Kurt .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (03) :576-598