Einstein relation in superdiffusive systems

被引:12
作者
Gradenigo, G. [1 ,2 ]
Sarracino, A. [1 ,2 ]
Villamaina, D. [3 ]
Vulpiani, A. [1 ,2 ]
机构
[1] Univ Roma La Sapienza, CNR, Ist Sistemi Complessi, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Univ Paris 11, CNRS, LPTMS, UMR 8626, F-91405 Orsay, France
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2012年
关键词
driven diffusive systems (theory); stochastic particle dynamics (theory); transport processes/heat transfer (theory); current fluctuations; STRONG ANOMALOUS DIFFUSION; FLUCTUATION-DISSIPATION; RANDOM-WALKS; EQUATIONS; MODELS;
D O I
10.1088/1742-5468/2012/06/L06001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the Einstein relation between diffusion and response to an external field in systems showing superdiffusion. In particular, we investigate a continuous time Levy walk where the velocity remains constant for a time tau with distribution P-tau(tau) similar to tau(-g). At varying g the diffusion can be standard or anomalous; in spite of this, if in the unperturbed system a current is absent, the Einstein relation holds. In the case where a current is present the scenario is more complicated and the usual Einstein relation fails. This suggests that the main ingredient for the breaking of the Einstein relation is not the anomalous diffusion but the presence of a mean drift (current).
引用
收藏
页数:9
相关论文
共 21 条
  • [1] Approach to a Stationary State in an External Field
    Alastuey, A.
    Piasecki, J.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 139 (06) : 991 - 1012
  • [2] Simple stochastic models showing strong anomalous diffusion
    Andersen, KH
    Castiglione, P
    Mazzino, A
    Vulpiani, A
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2000, 18 (03) : 447 - 452
  • [3] Barbier M, 2012, ARXIV12036759
  • [4] Generalized Einstein relation: A stochastic modeling approach
    Barkai, E
    Fleurov, VN
    [J]. PHYSICAL REVIEW E, 1998, 58 (02) : 1296 - 1310
  • [5] Barkai E., 1998, LECT NOTES PHYS, V511
  • [6] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [7] Random walks on graphs: ideas, techniques and results
    Burioni, R
    Cassi, D
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (08): : R45 - R78
  • [8] Levy walks and scaling in quenched disordered media
    Burioni, Raffaella
    Caniparoli, Luca
    Vezzani, Alessandro
    [J]. PHYSICAL REVIEW E, 2010, 81 (06):
  • [9] On strong anomalous diffusion
    Castiglione, P
    Mazzino, A
    Muratore-Ginanneschi, P
    Vulpiani, A
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (01) : 75 - 93
  • [10] NON-LINEAR MODEL BOLTZMANN EQUATIONS AND EXACT-SOLUTIONS
    ERNST, MH
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 78 (01): : 1 - 171