Moderate Deviations for a Stochastic Heat Equation with Spatially Correlated Noise

被引:7
作者
Li, Yumeng [1 ]
Wang, Ran [2 ]
Zhang, Shuguang [1 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
Stochastic heat equation; Freidlin-Wentzell's large deviation; Moderate deviations; Central limit theorem; WAVE-EQUATION; RANDOM-VARIABLES; SPACE DIMENSION; ESTIMATORS; APPROXIMATION; PERTURBATIONS; SMOOTHNESS; EXISTENCE; DENSITY; SPDES;
D O I
10.1007/s10440-014-9969-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we proved a central limit theorem and established a moderate deviation principle for a perturbed stochastic heat equations defined on [0,T]x[0,1] (d) . This equation is driven by a Gaussian noise, white in time and correlated in space.
引用
收藏
页码:59 / 80
页数:22
相关论文
共 34 条
[1]   APPROXIMATION AND SUPPORT THEOREM IN HOLDER NORM FOR PARABOLIC STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BALLY, V ;
MILLET, A ;
SANZSOLE, M .
ANNALS OF PROBABILITY, 1995, 23 (01) :178-222
[2]  
Budhiraja A., 2014, ARXIV14017316V1
[3]  
Cerrai S, 2004, ANN PROBAB, V32, P1100
[4]  
Chen X., 1991, Chinese J. Appl. Probab. Stat, V7, P24
[5]   Uniform large deviations for parabolic SPDEs and applications [J].
Chenal, F ;
Millet, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 72 (02) :161-186
[6]   The non-linear stochastic wave equation in high dimensions [J].
Conus, Daniel ;
Dalang, Robert C. .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :629-670
[7]  
Da Prato G., 2014, Stochastic Equations in Infinite Dimensions, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9780511666223, 10.1017/CBO9781107295513]
[8]  
Dalang R., 1999, Electron. J. Probab., V4, P1, DOI [10.1214/EJP.v4-43, DOI 10.1214/EJP.V4-43]
[9]  
Dalang RC, 1998, ANN PROBAB, V26, P187
[10]  
DEACOSTA A, 1992, T AM MATH SOC, V329, P357