Bounded cohomology of subgroups of mapping class groups

被引:190
作者
Bestvina, Mladen [1 ]
Fujiwara, Koji
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
Bounded cohomology; mapping class groups; hyperbolic groups;
D O I
10.2140/gt.2002.6.69
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every subgroup of the mapping class group MCG(S) of a compact surface S is either virtually abelian or it has infinite dimensional second bounded cohomology. As an application, we give another proof of the Farb-Kaimanovich-Masur rigidity theorem that states that MCG(S) does not contain a higher rank lattice as a subgroup.
引用
收藏
页码:69 / 89
页数:21
相关论文
共 28 条
[1]  
[Anonymous], 2001, CONTINUOUS BOUNDED C
[2]   ABELIAN AND SOLVABLE SUBGROUPS OF THE MAPPING CLASS GROUP [J].
BIRMAN, JS ;
LUBOTZKY, A ;
MCCARTHY, J .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (04) :1107-1120
[3]  
BROOKS R, 1981, ANN MATH STUD, P53
[4]  
Burger M., 1999, J. Eur. Math. Soc. (JEMS), V1, P199, DOI DOI 10.1007/S100970050007
[5]  
Burger M, 2000, MAUNTNER PROPERTY HO
[6]  
Burger M, 2000, CONTINUOUS BOUNDED C
[7]  
CASSON AJ, 1988, AUTOMORPHISMS SURFAC, DOI DOI 10.1017/CBO9780511623912
[8]   Bounded cohomology and non-uniform perfection of mapping class groups [J].
Endo, H ;
Kotschick, D .
INVENTIONES MATHEMATICAE, 2001, 144 (01) :169-175
[9]   The second bounded cohomology of word-hyperbolic groups [J].
Epstein, DBA ;
Fujiwara, K .
TOPOLOGY, 1997, 36 (06) :1275-1289
[10]   Superrigidity and mapping class groups [J].
Farb, B ;
Masur, H .
TOPOLOGY, 1998, 37 (06) :1169-1176