Lithium intercalation into TiO2(B): A comparison of LDA, GGA, and GGA+U density functional calculations

被引:60
作者
Morgan, Benjamin J. [1 ]
Madden, Paul A. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
ELECTRONIC-STRUCTURE; AB-INITIO; SYNCHROTRON-RADIATION; TITANIUM-DIOXIDE; OXYGEN VACANCIES; PLUS U; SURFACE; ANATASE; RUTILE; STATES;
D O I
10.1103/PhysRevB.86.035147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Density functional theory has been used to study lithium intercalation into TiO2(B) at low to moderate concentrations [0 < x(Li) <= 0.25] with a range of density functionals: LDA, GGA (PW91, PBE, PBEsol), and GGA + U (PBE + U, PBEsol + U), with the GGA + U calculations employing a Hubbard + U correction to the Ti d states. LDA and GGA functionals give the same general behavior, whereas qualitatively different behavior is predicted by GGA + U for electronic structure and the order of stability of occupied intercalation sites. LDA/GGA functionals predict LixTiO2(B) to be metallic, with the excess charge distributed over all the Ti sites. In contrast, GGA + U predicts defect states in the band gap corresponding to charge strongly localized at specific Ti sites. All the considered functionals predict A1 and/or A2 site occupation at x(Li) = 0.25, which challenges the interpretation of previous neutron data that, at this composition, the C site is preferentially occupied.
引用
收藏
页数:13
相关论文
共 86 条
[1]   Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study [J].
Armstrong, A. Robert ;
Arrouvel, Corinne ;
Gentili, Valentina ;
Parker, Stephen C. ;
Islam, M. Saiful ;
Bruce, Peter G. .
CHEMISTRY OF MATERIALS, 2010, 22 (23) :6426-6432
[2]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[3]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[4]   Nanotubes with the TiO2-B structure [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
CHEMICAL COMMUNICATIONS, 2005, (19) :2454-2456
[5]   Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study [J].
Arrouvel, Corinne ;
Parker, Stephen C. ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4778-4783
[6]   Lithium ion insertion in nanoporous anatase TiO2 studied with RIXS [J].
Augustsson, A ;
Henningsson, A ;
Butorin, SM ;
Siegbahn, H ;
Nordgren, J ;
Guo, JH .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (07) :3983-3987
[7]   Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations [J].
Ben Yahia, Mouna ;
Lemoigno, Frederic ;
Beuvier, Thomas ;
Filhol, Jean-Sebastien ;
Richard-Plouet, Mireille ;
Brohan, Luc ;
Doublet, Marie-Liesse .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (20)
[8]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[9]   PHYSICAL-PROPERTIES OF BRONZE MXTIO2(B) [J].
BROHAN, L ;
MARCHAND, R .
SOLID STATE IONICS, 1983, 9-10 (DEC) :419-424
[10]   Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface [J].
Calzado, Carmen J. ;
Hernandez, Norge Cruz ;
Sanz, Javier Fdez .
PHYSICAL REVIEW B, 2008, 77 (04)