Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application

被引:40
作者
Gunjo, Dawit Gudeta [1 ]
Jena, Smruti Ranjan [1 ]
Mahanta, Pinakeswar [1 ]
Robi, P. S. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Mech Engn, Gauhati 781039, Assam, India
关键词
Paraffin; Nanofluid; Average temperature; Melt fraction; Solidification; PHASE-CHANGE MATERIALS; ENERGY-STORAGE; PARAFFIN WAX; CONDUCTIVITY ENHANCEMENT; PERFORMANCE; WATER; COLLECTOR; SYSTEM; SUSPENSIONS; EXERGY;
D O I
10.1016/j.renene.2018.01.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The performance of all latent heat storage system depends on the quality of phase change material used. In the present study, paraffin-based nanofluid dispersed with 5% of Cu, 5% of CuO and 5% of Al2O3 nanoparticles are used to investigate its effect on the storage characteristics. A 3-D numerical model of a shell and tube regenerative type latent heat storage is developed using (R) COMSOL Multiphysics 4.3a to predict the average temperature and melt fraction of paraffin-based nanofluid. The validation with the established pieces of literature and experiments indicated a sound agreement. The effect of adding nanoparticles on melting/solidification rate and energy storing/releasing rate are also studied. The result revealed that addition of 5% of Cu, 5% of Al2O3 and 5% of CuO nanoparticles improved the melting rate by 10 times, 3.46 times and 2.25 times and the discharged rate by 8 times, 3 times and 1.7 times, respectively compared to the pure paraffin filled latent heat storage system. However, it decreased the specific heat and heat of fusion which reduced the sensible and latent heat storing capacity. Additionally, orientations of cylinder and tube arrangement are also studied numerically using paraffin as phase change material. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:652 / 665
页数:14
相关论文
共 44 条
[1]   An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material [J].
Agarwal, Ashish ;
Sarviya, R. M. .
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2016, 19 (01) :619-631
[2]   NUMERICAL SOLUTION OF PHASE-CHANGE PROBLEMS [J].
BONACINA, C ;
COMINI, G ;
FASANO, A ;
PRIMICERIO, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1973, 16 (10) :1825-1832
[3]   Impact of load profile and collector technology on the fractional savings of solar domestic water heaters under various climatic conditions [J].
Bouhal, T. ;
Agrouaz, Y. ;
Allouhi, A. ;
Kousksou, T. ;
Jamil, A. ;
El Rhafiki, T. ;
Zeraouli, Y. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (18) :13245-13258
[4]   Influence of nanomaterials on properties of latent heat solar thermal energy storage materials - A review [J].
Dheep, G. Raam ;
Sreekumar, A. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 83 :133-148
[5]   A Theoretical and Experimental Investigation of Unidirectional Freezing of Nanoparticle-Enhanced Phase Change Materials [J].
Fan, Liwu ;
Khodadadi, J. M. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (09)
[6]   An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM) [J].
Fan, Liwu ;
Khodadadi, J. M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 62 :120-126
[7]   Thermal conductivity enhancement of phase change materials for thermal energy storage: A review [J].
Fan, Liwu ;
Khodadadi, J. M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :24-46
[8]   A review on phase change energy storage: materials and applications [J].
Farid, MM ;
Khudhair, AM ;
Razack, SAK ;
Al-Hallaj, S .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (9-10) :1597-1615
[9]   Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis [J].
Gunjo, Dawit Gudeta ;
Mahanta, Pinakeswar ;
Robi, Puthuveettil Sreedharan .
RENEWABLE ENERGY, 2017, 114 :655-669
[10]   CFD and experimental investigation of flat plate solar water heating system under steady state condition [J].
Gunjo, Dawit Gudeta ;
Mahanta, Pinakeswar ;
Robi, P. S. .
RENEWABLE ENERGY, 2017, 106 :24-36