Scanning tunneling microscopy of buried dopants in silicon: images and their uncertainties

被引:1
作者
Rozanski, Piotr T. [1 ]
Bryant, Garnett W. [2 ]
Zielinski, Michal [1 ]
机构
[1] Nicolaus Copernicus Univ Torun, Fac Phys Astron & Informat, Inst Phys, Torun, Poland
[2] NIST, Nanoscale Device Characterizat Div, Gaithersburg, MD 20899 USA
关键词
SEMICONDUCTORS; DONOR;
D O I
10.1038/s41524-022-00857-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ability to determine the locations of phosphorous dopants in silicon is crucial for the design, modelling, and analysis of atom-based nanoscale devices for future quantum computing applications. Recently, several papers showed that a metrology of scanning tunnelling microscopy (STM) imaging combined with atomistic tight-binding simulations could be used to determine coordinates of a dopant buried close to a Si surface. We identify effects which play a crucial role in the simulation of STM images and have to be precisely modelled for STM imaging of buried dopants and multi-dopant clusters to provide reliable position information. In contrast to previous work, we demonstrate that a metrology combining STM imaging with tight-binding simulations may lead to pronounced uncertainty due to tip orbital model, effects of dangling bonds and choice of local atomic basis for the tight-binding representation. Additional work is still needed to obtain a reliable STM metrology of buried dopant position.
引用
收藏
页数:9
相关论文
共 28 条
[1]   Microscopic electronic wave function and interactions between quasiparticles in empirical tight-binding theory [J].
Benchamekh, R. ;
Raouafi, F. ;
Even, J. ;
Larbi, F. Ben Cheikh ;
Voisin, P. ;
Jancu, J. -M. .
PHYSICAL REVIEW B, 2015, 91 (04)
[2]   Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization -: art. no. 115201 [J].
Boykin, TB ;
Klimeck, G ;
Oyafuso, F .
PHYSICAL REVIEW B, 2004, 69 (11)
[3]   Exact location of dopants below the Si(001): H surface from scanning tunneling microscopy and density functional theory [J].
Brazdova, Veronika ;
Bowler, David R. ;
Sinthiptharakoon, Kitiphat ;
Studer, Philipp ;
Rahnejat, Adam ;
Curson, Neil J. ;
Schofield, Steven R. ;
Fisher, Andrew J. .
PHYSICAL REVIEW B, 2017, 95 (07)
[4]   SPIN-ORBIT-SPLITTING IN CRYSTALLINE AND COMPOSITIONALLY DISORDERED SEMICONDUCTORS [J].
CHADI, DJ .
PHYSICAL REVIEW B, 1977, 16 (02) :790-796
[5]   TUNNELING MATRIX-ELEMENTS IN 3-DIMENSIONAL SPACE - THE DERIVATIVE RULE AND THE SUM-RULE [J].
CHEN, CJ .
PHYSICAL REVIEW B, 1990, 42 (14) :8841-8857
[6]   THE STRUCTURE OF THE SI(100)2X1-H-SURFACE [J].
CRAIG, BI ;
SMITH, PV .
SURFACE SCIENCE, 1990, 226 (1-2) :L55-L58
[7]   A two-qubit gate between phosphorus donor electrons in silicon [J].
He, Y. ;
Gorman, S. K. ;
Keith, D. ;
Kranz, L. ;
Keizer, J. G. ;
Simmons, M. Y. .
NATURE, 2019, 571 (7765) :371-+
[8]   Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters [J].
Jancu, JM ;
Scholz, R ;
Beltram, F ;
Bassani, F .
PHYSICAL REVIEW B, 1998, 57 (11) :6493-6507
[9]   Strain effects on the electronic structure of strongly coupled self-assembled InAs/GaAs quantum dots:: Tight-binding approach [J].
Jaskolski, W. ;
Zielinski, M. ;
Bryant, Garnett W. ;
Aizpurua, J. .
PHYSICAL REVIEW B, 2006, 74 (19)
[10]   Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures [J].
Lee, S ;
Oyafuso, F ;
von Allmen, P ;
Klimeck, G .
PHYSICAL REVIEW B, 2004, 69 (04)