Modelling bivariate extreme precipitation distribution for data-scarce regions using Gumbel-Hougaard copula with maximum entropy estimation

被引:30
作者
Qian, Longxia [1 ]
Wang, Hongrui [2 ]
Dang, Suzhen [3 ]
Wang, Cheng [4 ]
Jiao, Zhiqian [2 ]
Zhao, Yong [5 ]
机构
[1] Natl Univ Def Technol, Inst Meteorol & Oceanog, Res Ctr Ocean Environm Numer Simulat, Nanjing 211101, Jiangsu, Peoples R China
[2] Beijing Normal Univ, Coll Water Sci, Minist Educ, Key Lab Water & Sediment Sci, Beijing 100875, Peoples R China
[3] Yellow River Conservancy Commiss, Yellow River Inst Hydraul Res, Zhengzhou 450003, Henan, Peoples R China
[4] Argonne Natl Lab, Environm Sci Div, 9700 S Cass Ave, Lemont, IL 60439 USA
[5] China Inst water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
extreme frequency analysis; Gumbel distribution; Gumbel-Hougaard copula; insufficient data; maximum entropy estimation; FLOOD FREQUENCY-ANALYSIS; CLIMATE-CHANGE; INTERPOLATION; RAINFALL;
D O I
10.1002/hyp.11406
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
A new method of parameter estimation in data scarce regions is valuable for bivariate hydrological extreme frequency analysis. This paper proposes a new method of parameter estimation (maximum entropy estimation, MEE) for both Gumbel and Gumbel-Hougaard copula in situations when insufficient data are available. MEE requires only the lower and upper bounds of two hydrological variables. To test our new method, two experiments to model the joint distribution of the maximum daily precipitation at two pairs of stations on the tributaries of Heihe and Jinghe River, respectively, were performed and compared with the method of moments, correlation index estimation, and maximum likelihood estimation, which require a large amount of data. Both experiments show that for the Ye Niugou and Qilian stations, the performance of MEE is nearly identical to those of the conventional methods. For the Xifeng and Huanxian stations, MEE can capture information indicating that the maximum daily precipitation at the Xifeng and Huanxian stations has an upper tail dependence, whereas the results generated by correlation index estimation and maximum likelihood estimation are unreasonable. Moreover, MEE is proved to be generally reliable and robust by many simulations under three different situations. The Gumbel-Hougaard copula with MEE can also be applied to the bivariate frequency analysis of other extreme events in data-scarce regions.
引用
收藏
页码:212 / 227
页数:16
相关论文
共 33 条
  • [1] [Anonymous], 2000, INFORM CODING THEORY
  • [2] Multivariate analysis of flood characteristics in a climate change context of the watershed of the Baskatong reservoir, Province of Quebec, Canada
    Ben Aissia, M. -A.
    Chebana, F.
    Ouarda, T. B. M. J.
    Roy, L.
    Desrochers, G.
    Chartier, I.
    Robichaud, E.
    [J]. HYDROLOGICAL PROCESSES, 2012, 26 (01) : 130 - 142
  • [3] Spatial Bayesian hierarchical modeling of precipitation extremes over a large domain
    Bracken, C.
    Rajagopalan, B.
    Cheng, L.
    Kleiber, W.
    Gangopadhyay, S.
    [J]. WATER RESOURCES RESEARCH, 2016, 52 (08) : 6643 - 6655
  • [4] Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging
    Castiglioni, S.
    Castellarin, A.
    Montanari, A.
    Skoien, J. O.
    Laaha, G.
    Bloeschl, G.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (03) : 715 - 727
  • [5] Multivariate assessment of droughts: Frequency analysis and dynamic return period
    De Michele, C.
    Salvadori, G.
    Vezzoli, R.
    Pecora, S.
    [J]. WATER RESOURCES RESEARCH, 2013, 49 (10) : 6985 - 6994
  • [6] Multivariate hydrological frequency analysis using copulas -: art. no. W01101
    Favre, AC
    El Adlouni, S
    Perreault, L
    Thiémonge, N
    Bobée, B
    [J]. WATER RESOURCES RESEARCH, 2004, 40 (01) : W011011 - W0110112
  • [7] Frees E.W., 1998, N. Am. Actuar. J, V1, P1, DOI DOI 10.1080/10920277.1998.10595667
  • [8] Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data
    Genest, C.
    Favre, A.-C.
    Beliveau, J.
    Jacques, C.
    [J]. WATER RESOURCES RESEARCH, 2007, 43 (09)
  • [9] Genest C., 2007, INSUR MATH ECON, V44, P199, DOI [10.1016/j.insmatheco.2007.10.005, DOI 10.1016/J.INSMATHECO.2007.10.005]
  • [10] Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula
    Ghosh, Subimal
    [J]. HYDROLOGICAL PROCESSES, 2010, 24 (24) : 3558 - 3567