EXMULF: An Explainable Multimodal Content-Based Fake News Detection System

被引:6
|
作者
Amri, Sabrine [1 ]
Sallami, Dorsaf [1 ]
Aimeur, Esma [1 ]
机构
[1] Univ Montreal, Dept Comp Sci & Operat Res DIRO, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fake news; Multimodal detection; Explainability;
D O I
10.1007/978-3-031-08147-7_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we present an explainable multimodal content-based fake news detection system. It is concerned with the veracity analysis of information based on its textual content and the associated image, together with an Explainable AI (XAI) assistant. To the best of our knowledge, this is the first study that aims to provide a fully explainable multimodal content-based fake news detection system using Latent Dirichlet Allocation (LDA) topic modeling, Vision-and-Language BERT (VilBERT) and Local Interpretable Model-agnostic Explanations (LIME) models. Our experiments on two real-world datasets demonstrate the relevance of learning the connection between two modalities, with an accuracy that exceeds 10 state-of-the-art fake news detection models.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [41] Fake news detection based on news content and social contexts: a transformer-based approach
    Shaina Raza
    Chen Ding
    International Journal of Data Science and Analytics, 2022, 13 : 335 - 362
  • [42] Fake news detection based on news content and social contexts: a transformer-based approach
    Raza, Shaina
    Ding, Chen
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2022, 13 (04) : 335 - 362
  • [43] A mutual attention based multimodal fusion for fake news detection on social network
    Ying Guo
    Applied Intelligence, 2023, 53 : 15311 - 15320
  • [44] A Multimodal Information Collector for Content-Based Image Retrieval System
    Zhang, He
    Sjoberg, Mats
    Laaksonen, Jorma
    Oja, Erkki
    NEURAL INFORMATION PROCESSING, PT III, 2011, 7064 : 737 - 746
  • [45] Not all fake news is semantically similar: Contextual semantic representation learning for multimodal fake news detection
    Peng, Liwen
    Jian, Songlei
    Kan, Zhigang
    Qiao, Linbo
    Li, Dongsheng
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)
  • [46] TELLER: A Trustworthy Framework For Explainable, Generalizable and Controllable Fake News Detection
    Liu, Hui
    Wang, Wenya
    Li, Haoru
    Li, Haoliang
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 15556 - 15583
  • [47] DCCMA-Net: Disentanglement-based cross-modal clues mining and aggregation network for explainable multimodal fake news detection
    Wei, Siqi
    Wang, Zheng
    Li, Meiling
    Liu, Xuanning
    Wu, Bin
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (04)
  • [48] A content-based deep intrusion detection system
    Soltani, Mahdi
    Siavoshani, Mahdi Jafari
    Jahangir, Amir Hossein
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2022, 21 (03) : 547 - 562
  • [49] NewsBR: A content-based news video browsing and retrieval system
    Liu, JP
    He, YX
    Peng, M
    FOURTH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2004, : 857 - 862
  • [50] NBR: A content-based news video browsing and retrieval system
    Liu, Huayong
    He, Tingting
    Zhang, Hui
    TECHNOLOGIES FOR E-LEARNING AND DIGITAL ENTERTAINMENT, PROCEEDINGS, 2007, 4469 : 793 - +