EXMULF: An Explainable Multimodal Content-Based Fake News Detection System

被引:6
作者
Amri, Sabrine [1 ]
Sallami, Dorsaf [1 ]
Aimeur, Esma [1 ]
机构
[1] Univ Montreal, Dept Comp Sci & Operat Res DIRO, Montreal, PQ, Canada
来源
FOUNDATIONS AND PRACTICE OF SECURITY, FPS 2021 | 2022年 / 13291卷
基金
加拿大自然科学与工程研究理事会;
关键词
Fake news; Multimodal detection; Explainability;
D O I
10.1007/978-3-031-08147-7_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we present an explainable multimodal content-based fake news detection system. It is concerned with the veracity analysis of information based on its textual content and the associated image, together with an Explainable AI (XAI) assistant. To the best of our knowledge, this is the first study that aims to provide a fully explainable multimodal content-based fake news detection system using Latent Dirichlet Allocation (LDA) topic modeling, Vision-and-Language BERT (VilBERT) and Local Interpretable Model-agnostic Explanations (LIME) models. Our experiments on two real-world datasets demonstrate the relevance of learning the connection between two modalities, with an accuracy that exceeds 10 state-of-the-art fake news detection models.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [11] Fake news detection based on news content and social contexts: a transformer-based approach
    Raza, Shaina
    Ding, Chen
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2022, 13 (04) : 335 - 362
  • [12] Towards explainable fake news detection and automated content credibility assessment: Polish internet and digital media use-case
    Kozik, Rafal
    Katek, Gracjan
    Gackowska, Marta
    Kula, Sebastian
    Komorniczak, Joanna
    Ksieniewicz, Pawel
    Pawlicka, Aleksandra
    Pawlicki, Marek
    Choras, Michal
    NEUROCOMPUTING, 2024, 608
  • [13] Game-on: graph attention network based multimodal fusion for fake news detection
    Dhawan, Mudit
    Sharma, Shakshi
    Kadam, Aditya
    Sharma, Rajesh
    Kumaraguru, Ponnurangam
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [14] An emotion-driven, transformer-based network for multimodal fake news detection
    Yadav, Ashima
    Gupta, Anika
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (01)
  • [15] An emotion-driven, transformer-based network for multimodal fake news detection
    Ashima Yadav
    Anika Gupta
    International Journal of Multimedia Information Retrieval, 2024, 13
  • [16] MANIFESTO: a huMAN-centric explaInable approach for FakE news spreaders deTectiOn
    Orestis Lampridis
    Dimitra Karanatsiou
    Athena Vakali
    Computing, 2022, 104 : 717 - 739
  • [17] Evaluating Fake News Detection Models from Explainable Machine Learning Perspectives
    Alharbi, Raed
    Vu, Minh N.
    Thai, My T.
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [18] MANIFESTO: a huMAN-centric explaInable approach for FakE news spreaders deTectiOn
    Lampridis, Orestis
    Karanatsiou, Dimitra
    Vakali, Athena
    COMPUTING, 2022, 104 (04) : 717 - 739
  • [19] Advancing Fake News Detection: Hybrid Deep Learning With FastText and Explainable AI
    Hashmi, Ehtesham
    Yayilgan, Sule Yildirim
    Yamin, Muhammad Mudassar
    Ali, Subhan
    Abomhara, Mohamed
    IEEE ACCESS, 2024, 12 : 44462 - 44480
  • [20] Ensemble Learning-based Fake News and Disinformation Detection System
    Hasimi, Lumbardha
    Poniszewska-Maranda, Aneta
    2021 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2021), 2021, : 145 - 153