Sustainable bioenergy production from marginal lands in the US Midwest

被引:553
|
作者
Gelfand, Ilya [1 ,2 ]
Sahajpal, Ritvik [1 ,3 ,4 ]
Zhang, Xuesong [1 ,3 ]
Izaurralde, R. Cesar [1 ,3 ,4 ]
Gross, Katherine L. [1 ,2 ,5 ]
Robertson, G. Philip [1 ,2 ,6 ]
机构
[1] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA
[2] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA
[3] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA
[4] Univ Maryland, Dept Geog Sci, College Pk, MD 20740 USA
[5] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[6] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
LIFE-CYCLE ASSESSMENT; CLIMATE-CHANGE; PART II; BIOFUELS; ETHANOL; CORN; AGRICULTURE; GRASSLANDS; DIVERSITY; EMISSIONS;
D O I
10.1038/nature11811
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Legislation on biofuels production in the USA(1) and Europe(2,3) is directing food crops towards the production of grain-based ethanol(2,3), which can have detrimental consequences for soil carbon sequestration(4), nitrous oxide emissions(5), nitrate pollution(6), biodiversity(7) and human health(8). An alternative is to grow lignocellulosic (cellulosic) crops on 'marginal' lands(9). Cellulosic feedstocks can have positive environmental outcomes(10,11) and could make up a substantial proportion of future energy portfolios(12,13). However, the availability of marginal lands for cellulosic feedstock production, and the resulting greenhouse gas (GHG) emissions, remains uncertain. Here we evaluate the potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate GHG emissions. In a comparative assessment of six alternative cropping systems over 20 years, we found that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops (-851 +/- 46 grams of CO2 equivalent emissions per square metre per year (gCO(2)e m(-2) yr(-1))). If fertilized, these communities have the capacity to produce about 63 +/- 5 gigajoules of ethanol energy per hectare per year. By contrast, an adjacent, no-till corn-soybean-wheat rotation produces on average 41 +/- 1 gigajoules of biofuel energy per hectare per year and has a net direct mitigation capacity of -397 +/- 32 gCO(2)e m(-2) yr(-1); a continuous corn rotation would probably produce about 62 +/- 7 gigajoules of biofuel energy per hectare per year, with 13% less mitigation. We also perform quantitative modelling of successional vegetation on marginal lands in the region at a resolution of 0.4 hectares, constrained by the requirement that each modelled location be within 80 kilometres of a potential biorefinery. Our results suggest that such vegetation could produce about 21 gigalitres of ethanol per year from around 11 million hectares, or approximately 25 per cent of the 2022 target for cellulosic biofuel mandated by the US Energy Independence and Security Act of 2007, with no initial carbon debt nor the indirect land-use costs associated with food-based biofuels. Other regional-scale aspects of biofuel sustainability(2), such as water quality(11,14) and biodiversity(15), await future study.
引用
收藏
页码:514 / +
页数:7
相关论文
共 50 条
  • [41] Bioenergy from plants and the sustainable yield challenge
    Karp, Angela
    Shield, Ian
    NEW PHYTOLOGIST, 2008, 179 (01) : 15 - 32
  • [42] Herbage production and chemical characteristics for bioenergy production by plant functional groups from semi-natural grasslands
    Melts, Indrek
    Heinsoo, Katrin
    Ivask, Mari
    BIOMASS & BIOENERGY, 2014, 67 : 160 - 166
  • [43] A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013
    Dai, Shuwei
    Shulski, Martha D.
    Hubbard, Kenneth G.
    Takle, Eugene S.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2016, 36 (01) : 517 - 525
  • [44] Biomass production from neglected and underutilized tall perennial grasses on marginal lands in India: a brief review
    Singh K.
    Awasthi A.
    Sharma S.K.
    Singh S.
    Tewari S.K.
    Energy, Ecology and Environment, 2018, 3 (4) : 207 - 215
  • [45] Life Cycle Assessment of Bioenergy and Bio-Based Products from Perennial Grasses Cultivated on Marginal Land in the Mediterranean Region
    Schmidt, Tobias
    Fernando, Ana Luisa
    Monti, Andrea
    Rettenmaier, Nils
    BIOENERGY RESEARCH, 2015, 8 (04) : 1548 - 1561
  • [46] CARBON SEQUESTRATION AND PRODUCTION OF Eucalyptus camaldulensis PLANTATIONS ON MARGINAL SANDY AGRICULTURAL LANDS
    Nawaz, Muhammad Farrakh
    Shah, Syed Athar Abbas
    Gul, Sadaf
    Afzal, Shazia
    Ahmad, Irfan
    Ghaffar, Abdul
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2017, 54 (02): : 335 - 342
  • [47] Nutrient fertilizer requirements for sustainable biomass supply to meet US bioenergy goal
    Han, Fengxiang X.
    King, Roger L.
    Lindner, Jeffrey S.
    Yu, Tzu-Yi
    Durbha, Surya S.
    Younan, Nicolas H.
    Monts, David L.
    Su, Yi
    Luthe, John C.
    Plodinec, M. John
    BIOMASS & BIOENERGY, 2011, 35 (01) : 253 - 262
  • [48] Potential of Bioenergy Production from Microalgae
    Driver T.
    Bajhaiya A.
    Pittman J.K.
    Current Sustainable/Renewable Energy Reports, 2014, 1 (03): : 94 - 103
  • [49] Biochemical production of bioenergy from agricultural crops and residue in Iran
    Alavijeh, Masih Karimi
    Yaghmaei, Soheila
    WASTE MANAGEMENT, 2016, 52 : 375 - 394
  • [50] From the petroeconomy to the bioeconomy: Integrating bioenergy production with agricultural demands
    Mathews, John A.
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2009, 3 (06): : 613 - 632