Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme

被引:115
作者
Zou, Wenli [1 ]
Kalescky, Robert [1 ]
Kraka, Elfi [1 ]
Cremer, Dieter [1 ]
机构
[1] So Methodist Univ, Dept Chem, Dallas, TX 75275 USA
基金
美国国家科学基金会;
关键词
CH STRETCHING FREQUENCIES; BOND LENGTHS; DISSOCIATION-ENERGIES; COMPLIANCE CONSTANTS; N-ALKANES; SPECTRA; FORCE; STRENGTHS; SIGNATURES; MATRIX;
D O I
10.1063/1.4747339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Information on the electronic structure of a molecule and its chemical bonds is encoded in the molecular normal vibrational modes. However, normal vibrational modes result from a coupling of local vibrational modes, which means that only the latter can provide detailed insight into bonding and other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)] represent a unique set of local modes that is directly related to the normal vibrational modes. The missing link between these two sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode frequencies of any molecule can be converted into its normal mode frequencies with the help of an adiabatic connection scheme that defines the coupling of the local modes in terms of coupling frequencies and reveals how avoided crossings between the local modes lead to changes in the character of the normal modes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747339]
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions
    Sutton, Catherine C. R.
    Franks, George V.
    da Silva, Gabriel
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2015, 134 : 535 - 542
  • [32] Terahertz vibrational modes induced by heterogeneous nucleation in n-alkanes
    Laib, Jonathan P.
    Nickel, Daniel V.
    Mittleman, Daniel M.
    CHEMICAL PHYSICS LETTERS, 2010, 493 (4-6) : 279 - 282
  • [33] Delocalisation softens polaron electronic transitions and vibrational modes in conjugated polymers
    Kahmann, Simon
    Loi, Maria A.
    Brabec, Christoph J.
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (22) : 6008 - 6013
  • [34] Raman and infrared vibrational modes of tricosane paraffin under high pressure
    Puerto, M. A.
    Balzaretti, N. M.
    VIBRATIONAL SPECTROSCOPY, 2014, 75 : 93 - 100
  • [35] Computational and experimental identification of hydrogen defect vibrational modes in zinc sulfide
    McCloy, J. S.
    Wolf, W.
    Wimmer, E.
    Poisl, W. H.
    Zelinski, B. J. J.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (17)
  • [36] Infrared-active Vibrational Modes of Fullerene C70
    Kalyan, Ashim
    Sen, Rupam
    Sarkar, Nirmal Kumar
    Bhattacharjee, Ramendu
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2013, 21 (05) : 429 - 435
  • [37] C-H Stretch Vibrational Modes: Tracers of Interstellar PAH Geometries?
    Vats, Akant
    Pathak, Amit
    Onaka, Takashi
    Sakon, Itsuki
    Endo, Izumi
    ACS EARTH AND SPACE CHEMISTRY, 2023, 7 (07): : 1350 - 1364
  • [38] Collective vibrational modes and dielectric relaxation of Ca2ErNbO6
    Mukherjee, Rajesh
    Dutta, Alo
    Sinha, T. P.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 39 : 67 - 73
  • [39] Vibrational Spectroscopy of Stretching and Bending Modes of Nickel Tetraphenyl Porphyrin: an Algebraic Approach
    Karumuri, Srinivasa Rao
    Choudhury, Joydeep
    Sarkar, Nirmal Kumar
    Bhattacharjee, Ramendu
    CHINESE PHYSICS LETTERS, 2009, 26 (09)
  • [40] Characterizing Anharmonic Vibrational Modes of Quinones with Two-Dimensional Infrared Spectroscopy
    Cyran, Jenee D.
    Nite, Jacob M.
    Krummel, Amber T.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (29) : 8917 - 8925