Quintic spline approach to the solution of a singularly-perturbed boundary-value problem

被引:23
作者
Aziz, T [1 ]
Khan, A [1 ]
机构
[1] Aligarh Muslim Univ, Dept Appl Math, Aligarh, Uttar Pradesh, India
关键词
singularly-perturbed boundary-value problems; quintic splines; monotone matrices; boundary layers; uniform convergence;
D O I
10.1023/A:1017959915002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A fourth-order uniform mesh difference scheme using quintic splines for solving a singularly-perturbed boundary-value problem of the form -epsilon y" + P(x)y = f(x), p(x) > 0, y(0) = alpha(0), y(1) = alpha(1), is derived. Our scheme leads to a pentadiagonal linear system. The convergence analysis is given and the method is shown to have fourth-order convergence. Numerical illustrations are given to confirm the theoretical analysis of our method.
引用
收藏
页码:517 / 527
页数:11
相关论文
共 13 条
[1]  
Ahlberg JH., 1967, The Theory of Splines and Their Applications
[2]   A HYBRID ASYMPTOTIC-FINITE ELEMENT METHOD FOR STIFF 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
CHIN, RCY ;
KRASNY, R .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (02) :229-243
[3]  
Doolan E.P., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[4]  
Henrici P., 1962, Discrete variable methods in ordinary differential equations
[5]   NUMERICAL-SOLUTION OF STIFF AND CONVECTION-DIFFUSION EQUATIONS USING ADAPTIVE SPLINE FUNCTION APPROXIMATION [J].
JAIN, MK ;
AZIZ, T .
APPLIED MATHEMATICAL MODELLING, 1983, 7 (01) :57-62
[6]  
KADALBAJOO MK, 1996, J OPTIM THEORY APPL, V9, P405
[7]  
Majer M. R., 1985, PROGR SCI COMPUTING, V5, P206
[8]  
Micula G., 1999, HDB SPLINES
[9]  
RASHIDINIA J, 1994, THESIS ALIGARH MUSLI
[10]  
Rashidinia J., 1997, INT J APPL SCI COMPU, V3, P191