Learning And Predicting Diabetes Data Sets Using Semi-Supervised Learning

被引:0
|
作者
Tayal, Radhika [1 ]
Shankar, Achyut [2 ]
机构
[1] Noida Int Univ Uttar Pradesh, Dept Comp Sci, Noida, Uttar Pradesh, India
[2] Amity Univ Uttar Pradesh, ASET, Dept Comp Sci & Engn, Noida, Uttar Pradesh, India
关键词
D O I
10.1109/confluence47617.2020.9058276
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Now these days, many tools have been developed by the researchers to analyze the impact of diabetes disease on common people within a definite period. However, all these tools have predicted the results based on the labeled dataset or smaller dataset. But in a recent environment, we have collected a large amount of data using both online and offline media. Consequently, data are generated from heterogeneous sources, are in unstructured form and voluminous, etc. As a result, it is not possible to use huge data by using traditional prediction algorithms because they work only on the structured dataset. In this paper, we have used the semi-supervised learning approach that works on a partially labeled dataset for predicting diabetes disease. The partial dataset is the combination of a labeled and unlabelled dataset. For prediction, we have considered 80% unlabelled datasets and 20% labeled datasets. We developed a user based interface for the user to build their prediction model using labeled and unlabeled datasets and analyze the data according to their requirements and interest. Our main objective is to develop a diabetes prediction system that can be used by the researcher and the common people using with minimal labelled datasets.
引用
收藏
页码:385 / 389
页数:5
相关论文
共 50 条
  • [41] Semi-supervised Sequence Learning
    Dai, Andrew M.
    Le, Quoc V.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [42] Semi-supervised learning by disagreement
    Zhi-Hua Zhou
    Ming Li
    Knowledge and Information Systems, 2010, 24 : 415 - 439
  • [43] Semi-Supervised Incremental Learning
    Bouchachia, Abdelhamid
    Prossegger, Markus
    Duman, Hakan
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [44] Semi-Supervised Learning by Disagreement
    Zhou, Zhi-Hua
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 93 - 93
  • [45] Deep Semi-Supervised Learning
    Hailat, Zeyad
    Komarichev, Artem
    Chen, Xue-Wen
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2154 - 2159
  • [46] Reliable Semi-supervised Learning
    Shao, Junming
    Huang, Chen
    Yang, Qinli
    Luo, Guangchun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1197 - 1202
  • [47] Semi-supervised learning with dropouts
    Abhishek
    Yadav, Rakesh Kumar
    Verma, Shekhar
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215
  • [48] PRIVILEGED SEMI-SUPERVISED LEARNING
    Chen, Xingyu
    Gong, Chen
    Ma, Chao
    Huang, Xiaolin
    Yang, Jie
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2999 - 3003
  • [49] Introduction to semi-supervised learning
    Goldberg, Xiaojin
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009, 6 : 1 - 116
  • [50] A survey on semi-supervised learning
    Van Engelen, Jesper E.
    Hoos, Holger H.
    MACHINE LEARNING, 2020, 109 (02) : 373 - 440