Galileo, a data platform for viewing news on social networks

被引:1
作者
Carcamo-Ulloa, Luis [1 ]
Mellado, Claudia [2 ]
Blana-Romero, Carlos [3 ]
Saez-Trumper, Diego [4 ]
机构
[1] Univ Austral Chile, Inst Comunicac Social, Campus Isla Teja,Independencia 641, Valdivia, Chile
[2] Pontificia Univ Catolica Valparaiso, Escuela Periodismo, Ave Univ 330,Campus Curauma, Valparaiso, Chile
[3] Univ Austral Chile, Inst Informat, Campus Miraflores,Independencia 641, Valdivia, Chile
[4] Univ Pornpeu Fabra, Fdn Wikimedia, Barcelona, Spain
来源
PROFESIONAL DE LA INFORMACION | 2022年 / 31卷 / 05期
关键词
News; Visualisation; Data science; Textual data; Journalism; Social media; Social networks; Platforms; Twitter; Facebook; Instagram; Galileo; PITFALLS; MEDIA;
D O I
10.3145/epi.2022.sep.12
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
This article aims to introduce Galileo, a platform for extracting and organizing news media data on social networks. Galileo integrates publications made on the main social networks used in the information ecosystem, namely Facebook, Twitter, and histogram. Currently, the system includes 97 media outlets from nine countries: Brazil, Chile, Germany, Japan, Mexico, South Korea, Spain, United Kingdom, and United States. Galileo uses a Twitter API and the service Crowd-Tangle to download Facebook and histogram posts. This data is stored in a local database and can be accessed through a user-friendly interface, which allows for the analysis of different characteristics of the posts, such as their text, source popularity, and temporal dimension. Galileo is a tool for researchers interested in understanding news cycles and analyzing news content on social networks.
引用
收藏
页数:13
相关论文
共 42 条
  • [1] Arcila-Calderon Carlos, 2017, ANALITICA VISUALIZAC
  • [2] Baden C., 2018, Doing News Framing Analysis II: Empirical and Theoretical Perspectives, V1st, P3, DOI [DOI 10.4324/9781315642239-1, 10.4324/9781315642239-1]
  • [3] Bias on the Web
    Baeza-Yates, Ricardo
    [J]. COMMUNICATIONS OF THE ACM, 2018, 61 (06) : 54 - 61
  • [4] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [5] Carcamo-Ulloa L, 2017, NUEVAS IDEAS INFORM, V13, P667
  • [6] Fake news in Chile and Spain: How do the media tell us about fake news?
    Carcamo-Ulloa, Luis
    Cardenas-Neira, Camila
    Saez-Trumper, Diego
    Toural-Bran, Carlos
    [J]. JOURNAL OF IBERIAN AND LATIN AMERICAN RESEARCH, 2020, 26 (03) : 320 - 337
  • [7] Cárdenas Neira Camila, 2016, Estud. filol., P25
  • [8] Cardon D., 2018, Con que suenan los algoritmos. Nuestras vidas en el tiempo de los big data
  • [9] Cecchet Emmanuel, 2020, SenSys '20: Proceedings of the 18th Conference on Embedded Networked Sensor Systems, P792, DOI 10.1145/3384419.3430598
  • [10] Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts
    Grimmer, Justin
    Stewart, Brandon M.
    [J]. POLITICAL ANALYSIS, 2013, 21 (03) : 267 - 297