An elliptic problem arising from the unsteady transonic small disturbance equation

被引:47
作者
Canic, S
Keyfitz, BL
机构
[1] UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77004
[2] FIELDS INST,WATERLOO,ON,CANADA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jdeq.1996.0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a theorem on existence of a weak solution of the Dirichlet problem for a quasilinear elliptic equation with a degeneracy on one part of the boundary. The degeneracy is of a type (''Keldysh type'') associated with singular behavior-blow-up of a derivative-at the boundary. We define an associated operator which is continuous, pseudo-monotone and coercive and show that a weak solution displaying singular behavior at the boundary exists. (C) 1996 Academic Press, Inc.
引用
收藏
页码:548 / 574
页数:27
相关论文
共 17 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   MACH REFLECTION FOR THE 2-DIMENSIONAL BURGERS-EQUATION [J].
BRIO, M ;
HUNTER, JK .
PHYSICA D, 1992, 60 (1-4) :194-207
[3]  
CANIC S, IN PRESS P 5 INT C H
[4]  
CHOI YS, IN PRESS P AM MATH S
[5]   THE VONNEUMANN PARADOX FOR THE DIFFRACTION OF WEAK SHOCK-WAVES [J].
COLELLA, P ;
HENDERSON, LF .
JOURNAL OF FLUID MECHANICS, 1990, 213 :71-94
[6]  
Gilbarg D, 1977, ELLIPTIC PARTIAL DIF
[7]  
HUNTER JK, 1991, IMA, V29, P79
[8]  
Keldysh M.V., 1951, Dokl. Akad. Nauk SSSR, V77, P181
[9]   DEGENERATE ELLIPTIC-PARABOLIC EQUATIONS OF SECOND ORDER [J].
KOHN, JJ ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1967, 20 (04) :797-+
[10]  
MORAWETZ CS, IN PRESS COMM PURE A