Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes

被引:17
作者
Feng, Tao [1 ]
Momihara, Koji [2 ]
Xiang, Qing [3 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Kumamoto Univ, Fac Educ, Kumamoto 8608555, Japan
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
ASSOCIATION SCHEMES; 2-WEIGHT CODES; GAUSS SUMS;
D O I
10.1007/s00493-014-2895-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a construction of strongly regular Cayley graphs and a construction of skew Hadamard difference sets. Both constructions are based on choosing cyclotomic classes of finite fields, and they generalize the constructions given by Feng and Xiang [10,12]. Three infinite families of strongly regular graphs with new parameters are obtained. The main tools that we employed are index 2 Gauss sums, instead of cyclotomic numbers.
引用
收藏
页码:413 / 434
页数:22
相关论文
共 28 条
[1]  
Baumert L.D., 1973, DSN Progr. Rep, V16, P128
[2]   UNIFORM CYCLOTOMY [J].
BAUMERT, LD ;
MILLS, WH ;
WARD, RL .
JOURNAL OF NUMBER THEORY, 1982, 14 (01) :67-82
[3]  
Berndt B., 1997, Gauss and Jacobi Sums
[4]  
Beth T., 1999, Encyclopedia of Mathematics and Its Applications, V1
[5]   Cyclotomy and strongly regular graphs [J].
Brouwer, AE ;
Wilson, RM ;
Xiang, Q .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1999, 10 (01) :25-28
[6]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[7]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[8]   SOME NEW CYCLOTOMIC STRONGLY REGULAR GRAPHS [J].
DELANGE, CLM .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (04) :329-330
[9]   Pseudocyclic and non-amorphic fusion schemes of the cyclotomic association schemes [J].
Feng, Tao ;
Wu, Fan ;
Xiang, Qing .
DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (03) :247-257
[10]   Strongly regular graphs from unions of cyclotomic classes [J].
Feng, Tao ;
Xiang, Qing .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (04) :982-995