共 45 条
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation
被引:371
作者:
Romanov, Julia
[1
]
Walczak, Marta
[1
]
Ibiricu, Iosune
[1
]
Schuechner, Stefan
[2
]
Ogris, Egon
[2
]
Kraft, Claudine
[1
]
Martens, Sascha
[1
]
机构:
[1] Univ Vienna, Max F Perutz Labs, Bioctr, Vienna, Austria
[2] Med Univ Vienna, Max F Perutz Labs, Bioctr, Vienna, Austria
基金:
欧洲研究理事会;
关键词:
autophagy;
autophagosome;
Atg5;
Atg8;
Atg16;
SACCHAROMYCES-CEREVISIAE;
ENDOPLASMIC-RETICULUM;
ATG12-ATG5;
CONJUGATE;
PROTEIN LIPIDATION;
EARLY STEPS;
YEAST;
BIOGENESIS;
MACROAUTOPHAGY;
CYTOPLASM;
PATHWAY;
D O I:
10.1038/emboj.2012.278
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane-bound vesicles termed autophagosomes. The conserved Atg5-Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5-Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5-Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre-autophagosomal structure but is essential for autophagy and cytoplasm-to-vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5-Atg12/Atg16 complex during autophagosome formation. The EMBO Journal (2012) 31, 4304-4317. doi:10.1038/emboj.2012.278; Published online 12 October 2012
引用
收藏
页码:4304 / 4317
页数:14
相关论文