Tuning aspect ratio of hierarchical ZnO nanotetrapod

被引:2
作者
Yan, Youguo [1 ]
Li, Chuanyong [1 ]
Zhou, Lixia [1 ]
Liu, Bing [1 ]
Zhang, Jun [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2016年 / 122卷 / 12期
基金
中国国家自然科学基金;
关键词
FIELD-EFFECT TRANSISTORS; SENSING PROPERTIES; BEAM LITHOGRAPHY; ENERGY-STORAGE; ZINC-OXIDE; NANOSTRUCTURES; PERFORMANCE; SUPERSATURATION; NANOWIRES; DESIGN;
D O I
10.1007/s00339-016-0555-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fine-tuning the aspect ratio is crucial for practical application and optimizing various properties of nanostructure. In this work, a mixed metal (Zn) and oxide (ZnO + C) powder was adopted as precursor to obtain initial high reagent vapour pressure and subsequent low reagent vapour pressure, and one kind of hierarchical ZnO nanotetrapod with legs composed of thick primary nanorod and thin secondary nanowire was successfully synthesized. Two growth stages controlled by the reagent supersaturation ratio were proposed to unveil the underlying growth mechanism of this hierarchical structure. Further, a series of comparative experiments were undertaken to validate the growth mode and explore the growth strategy tailoring the aspect ratio. Our results suggest one accessible approach to manipulate the aspect ratio, and the growth mode has some promises for preparing hierarchical nano-blocks with specific geometry demanding.
引用
收藏
页数:7
相关论文
共 41 条
[1]   From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties [J].
Alenezi, Mohammad R. ;
Henley, Simon J. ;
Emerson, Neil G. ;
Silva, S. Ravi P. .
NANOSCALE, 2014, 6 (01) :235-247
[2]   Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells [J].
Bi, Cheng ;
Wang, Qi ;
Shao, Yuchuan ;
Yuan, Yongbo ;
Xiao, Zhengguo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2015, 6
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]   Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size [J].
Gan, Zongsong ;
Cao, Yaoyu ;
Evans, Richard A. ;
Gu, Min .
NATURE COMMUNICATIONS, 2013, 4
[5]   Nanopropeller arrays of zinc oxide [J].
Gao, PX ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2004, 84 (15) :2883-2885
[6]   Manufacturing of inorganic nanomaterials: concepts and perspectives [J].
Gasparotto, Alberto ;
Barreca, Davide ;
Maccato, Chiara ;
Tondello, Eugenio .
NANOSCALE, 2012, 4 (09) :2813-2825
[7]   Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography [J].
Gschrey, M. ;
Thoma, A. ;
Schnauber, P. ;
Seifried, M. ;
Schmidt, R. ;
Wohlfeil, B. ;
Krueger, L. ;
Schulze, J. -H. ;
Heindel, T. ;
Burger, S. ;
Schmidt, F. ;
Strittmatter, A. ;
Rodt, S. ;
Reitzenstein, S. .
NATURE COMMUNICATIONS, 2015, 6
[8]   Nanoimprint lithography: Methods and material requirements [J].
Guo, L. Jay .
ADVANCED MATERIALS, 2007, 19 (04) :495-513
[9]   Recent progress in nanoimprint technology and its applications [J].
Guo, LJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (11) :R123-R141
[10]   Self-Assembly of Functional Molecules into 1D Crystalline Nanostructures [J].
Guo, Yanbing ;
Xu, Liang ;
Liu, Huibiao ;
Li, Yongjun ;
Che, Chi-Ming ;
Li, Yuliang .
ADVANCED MATERIALS, 2015, 27 (06) :985-1013