Quantum Many-Body Fluctuations Around Nonlinear Schrodinger Dynamics

被引:45
作者
Boccato, Chiara [1 ]
Cenatiempo, Serena [1 ]
Schlein, Benjamin [1 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
来源
ANNALES HENRI POINCARE | 2017年 / 18卷 / 01期
基金
瑞士国家科学基金会;
关键词
BOSE-EINSTEIN CONDENSATE; GROSS-PITAEVSKII EQUATION; MEAN-FIELD APPROXIMATION; CENTRAL-LIMIT-THEOREM; RIGOROUS DERIVATION; INTERACTING BOSONS; EXCITATION SPECTRUM;
D O I
10.1007/s00023-016-0513-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the many-body quantum dynamics of systems of bosons interacting through a two-body potential , scaling with the number of particles N. For , we obtain a norm-approximation of the evolution of an appropriate class of data on the Fock space. To this end, we need to correct the evolution of the condensate described by the one-particle nonlinear Schrodinger equation by means of a fluctuation dynamics, governed by a quadratic generator.
引用
收藏
页码:113 / 191
页数:79
相关论文
共 39 条
[1]   Rigorous derivation of the cubic NLS in dimension one [J].
Adami, Riccardo ;
Golse, Francois ;
Teta, Alessandro .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (06) :1193-1220
[2]   Mean field limit for bosons and propagation of Wigner measures [J].
Ammari, Z. ;
Nier, F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
[3]  
Ammari Z, 2016, COMMUN MATH SCI, V14, P1417
[4]  
Bardos C., 2000, Methods Appl. Anal., V7, P275
[5]   A Central Limit Theorem in Many-Body Quantum Dynamics [J].
Ben Arous, Gerard ;
Kirkpatrick, Kay ;
Schlein, Benjamin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 321 (02) :371-417
[6]   Quantitative Derivation of the Gross-Pitaevskii Equation [J].
Benedikter, Niels ;
de Oliveira, Gustavo ;
Schlein, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) :1399-1482
[7]   Multivariate Central Limit Theorem in Quantum Dynamics [J].
Buchholz, Simon ;
Saffirio, Chiara ;
Schlein, Benjamin .
JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (1-2) :113-152
[8]   Rate of Convergence Towards Hartree Dynamics [J].
Chen, Li ;
Lee, Ji Oon ;
Schlein, Benjamin .
JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) :872-903
[9]   The quintic NLS as the mean field limit of a boson gas with three-body interactions [J].
Chen, Thomas ;
Pavlovic, Natasa .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (04) :959-997
[10]   Correlation Structures, Many-Body Scattering Processes, and the Derivation of the Gross-Pitaevskii Hierarchy [J].
Chen, Xuwen ;
Holmer, Justin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (10) :3051-3110