Performance comparison of generational and steady-state asynchronous multi-objective evolutionary algorithms for computationally-intensive problems

被引:24
作者
Zavoianu, Alexandru-Ciprian [1 ,3 ]
Lughofer, Edwin [1 ]
Koppelstaetter, Werner [3 ]
Weidenholzer, Guenther [3 ]
Amrhein, Wolfgang [2 ,3 ]
Klement, Erich Peter [1 ,3 ]
机构
[1] Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, Fuzzy Log Lab Linz Hagenberg, Linz, Austria
[2] Johannes Kepler Univ Linz, Inst Elect Drives & Power Elect, Linz, Austria
[3] Linz Ctr Mechatron, Linz, Austria
关键词
Evolutionary computation; Multi-objective optimization; Performance analysis; Master-slave parallelization; Steady-state evolution; Electrical drive design;
D O I
10.1016/j.knosys.2015.05.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the last two decades, multi-objective evolutionary algorithms (MOEAs) have become ever more used in scientific and industrial decision support and decision making contexts the require an a posteriori articulation of preference. The present work is focused on a comparative analysis of the performance of two master-slave parallelization (MSP) methods, the canonical generational scheme and the steady-state asynchronous scheme. Both can be used to improve the convergence speed of multi-objective evolutionary algorithms that must use computationally-intensive fitness evaluation functions. Both previous and present experiments show that a correct choice for one or the other parallelization method can lead to substantial improvements with regard to the overall duration of the optimization process. Our main aim is to provide practitioners of MOEAs with a simple but effective method of deciding which MSP option is better given the particularities of the concrete optimization process. This in turn, would give the decision maker more time for articulating preferences (i.e., more flexibility). Our analysis is performed based on 15 well-known MOOP benchmark problems and two simulation-based industrial optimization processes from the field of electrical drive design. For the first industrial MOOP, when comparing with a preliminary study, applying the steady-state asynchronous MSP enables us to achieve an overall speedup (in terms of total wall-clock computation time) of approximate to 25%. For the second industrial MOOP, applying the steady-state MSP produces an improvement of approximate to 12%. We focus our study on two of the best known and most widely used MOEAs: the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 60
页数:14
相关论文
共 27 条
  • [1] [Anonymous], 1999, Genetic Algorithms and Engineering Optimization
  • [2] [Anonymous], LECT NOTES COMPUTER
  • [3] [Anonymous], 1991, F GENETIC ALGORITHMS
  • [4] [Anonymous], 2002, Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems (EUROGEN 2001)
  • [5] [Anonymous], 2001, MultiObjective Optimization Using Evolutionary Algorithms
  • [6] Coello C. C, 2007, EVOLUTIONARY ALGORIT
  • [7] Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
    Das, I
    Dennis, JE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) : 631 - 657
  • [8] Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
  • [9] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [10] Deb K., 1995, Complex Systems, V9, P115