Spinless Duffin-Kemmer-Petiau Oscillator in a Galilean Non-commutative Phase Space

被引:2
作者
de Melo, G. R. [2 ]
de Montigny, M. [1 ,3 ]
Santos, E. S. [4 ]
机构
[1] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2E1, Canada
[2] Univ Fed Reconcavo Bahia, Nucleo Interdisciplinar Ciencia, Engn & Tecnol Ctr Ciencias Exatas & Tecnol, Cruz Das Almas, BA, Brazil
[3] Univ Alberta, Fac St Jean, Edmonton, AB T6C 4G9, Canada
[4] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
基金
加拿大自然科学与工程研究理事会;
关键词
Galilean covariance; Non-commutative phase space; Duffin-Kemmer-Petiauequations; MANY-BODY THEORY; LANDAU PROBLEM; FOCK EQUATIONS; DKP OSCILLATOR; GAUGE-THEORY; FIELD; COVARIANCE; INVARIANCE; EQUIVALENCE; SCHRODINGER;
D O I
10.1007/s10773-012-1132-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine Galilei-invariant linear wave equations in a non-commutative phase space. Specifically, we establish and solve the Galilean covariant Duffin-Kemmer-Petiau equation for spin-0 fields in a harmonic oscillator potential. We obtain these wave equations with a Galilean covariant approach, based on a (4+1)-dimensional manifold with light-cone coordinates followed by a reduction to a (3+1)-dimensional spacetime. We find the exact wave functions and their energy levels, and we examine the effects of non-commutativity.
引用
收藏
页码:2524 / 2539
页数:16
相关论文
共 59 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS
  • [2] The quantization of Galilean Duffin-Kemmer-Petiau field
    Abreu, L. M.
    Ferreira, F. J. S.
    Santos, E. S.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2010, 40 (02) : 235 - 241
  • [3] ALVAREZ PD, 2008, PHYS LETT B, V906
  • [4] Quantum Hall effect in bilayer systems and the noncommutative plane: A toy model approach
    Basu, B
    Ghosh, S
    [J]. PHYSICS LETTERS A, 2005, 346 (1-3) : 133 - 140
  • [5] On connection between the two-body Dirac oscillator and Kemmer oscillators
    Bednar, M
    Ndimubandi, J
    Nikitin, AG
    [J]. CANADIAN JOURNAL OF PHYSICS, 1997, 75 (05) : 283 - 290
  • [6] Noncommutative quantum scattering in a central field
    Bellucci, S
    Yeranyan, A
    [J]. PHYSICS LETTERS B, 2005, 609 (3-4) : 418 - 423
  • [7] Noncommutative gravitational quantum well -: art. no. 025010
    Bertolami, O
    Rosa, JG
    de Aragao, CML
    Castorina, P
    Zappalà, D
    [J]. PHYSICAL REVIEW D, 2005, 72 (02): : 1 - 9
  • [8] Dirac Oscillator in Noncommutative Phase Space
    Cai, Shaohong
    Jing, Tao
    Guo, Guangjie
    Zhang, Rukun
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (08) : 1699 - 1705
  • [9] Carey AL, 2006, J GEOM SYMMETRY PHYS, V6, P16
  • [10] Noncommutative field theory and Lorentz violation
    Carroll, SM
    Harvey, JA
    Kostelecky, VA
    Lane, CD
    Okamoto, T
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (14) : 141601/1 - 141601/4