NON RIGID GEOMETRIC DISTORTIONS CORRECTION - APPLICATION TO ATMOSPHERIC TURBULENCE STABILIZATION

被引:49
作者
Mao, Yu [1 ]
Gilles, Jerome [2 ]
机构
[1] Univ Minnesota, Inst Math & Its Applicat, Minneapolis, MN 55455 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Turbulence restoration; nonlocal total variation; optical flow; Bregman iterations; IMAGE; BLIND; REGULARIZATION; CONVERGENCE;
D O I
10.3934/ipi.2012.6.531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel approach is presented to recover an image degraded by atmospheric turbulence. Given a sequence of frames affected by turbulence, we construct a variational model to characterize the static image. The optimization problem is solved by Bregman Iteration and the operator splitting method. Our algorithm is simple, efficient, and can be easily generalized for different scenarios.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 30 条
[11]  
Frakes D., 2001, P IEEE INT C AC SPEE
[12]  
Gepshtein S., 2004, P EUS
[13]   NONLOCAL OPERATORS WITH APPLICATIONS TO IMAGE PROCESSING [J].
Gilboa, Guy ;
Osher, Stanley .
MULTISCALE MODELING & SIMULATION, 2008, 7 (03) :1005-1028
[14]  
Gilles J., 2008, P ADV CONC INT VIS S
[15]   PARAMETRIC MAXIMUM FLOW ALGORITHMS FOR FAST TOTAL VARIATION MINIMIZATION [J].
Goldfarb, Donald ;
Yin, Wotao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05) :3712-3743
[16]   The Split Bregman Method for L1-Regularized Problems [J].
Goldstein, Tom ;
Osher, Stanley .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02) :323-343
[17]   Blind deconvolution using TV regularization and Bregman iteration [J].
He, L ;
Marquina, A ;
Osher, SJ .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2005, 15 (01) :74-83
[18]  
Hirsch M., 2010, COMP VIS PATT REC C
[19]  
LEMAITRE M, 2007, THESIS U BOURGOGNE
[20]   Atmospheric turbulence-degraded image restoration using principal components analysis [J].
Li, Dalong ;
Mersereau, Russell M. ;
Simske, Steven .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (03) :340-344