First principles study of magnetism induced by topological frustration of bowtie-shaped graphene nanoflake

被引:15
作者
Ge, Yang [1 ,2 ]
Ji, Jianlong [1 ,2 ]
Shen, Zhizhong [1 ,2 ]
Zhang, Qiang [1 ,2 ]
Jian, Aoqun [1 ,2 ]
Duan, Qianqian [1 ,2 ]
Wang, Chao [3 ]
Jiang, Jun [4 ]
Zhang, Wendong [1 ,2 ]
Sang, Shengbo [1 ,2 ]
机构
[1] Taiyuan Univ Technol, MicroNano Syst Res Ctr, Key Lab Adv Transducers & Intelligent Control Sys, Minist Educ, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Coll Informat Engn, Taiyuan 030024, Shanxi, Peoples R China
[3] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
[4] Beijing Comp Ctr, Beijing 100094, Peoples R China
基金
美国国家科学基金会;
关键词
MOLECULAR-ORBITAL METHOD; QUANTUM DOTS; ARMCHAIR EDGES; ZIGZAG;
D O I
10.1016/j.carbon.2017.11.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fine-tuning magnetic states by understanding topological frustration inducing magnetic mechanism should allow greater flexibility for the design of graphene-based spintronics. Based on first-principles calculations, it is predicted that bowtie-shaped graphene nanoflake (GNF) is of spin-polarized ground state exhibiting antiferromagnetic (AFM) ordering between two individual triangular GNFs. It is demonstrated that strength of antiferromagnetic coupling of both symmetric and asymmetric bowtie-shaped GNF displays strong zero-energy-state-orientated behavior due to non-trivial nature of topological frustration, with implications for designing graphene nanostructures with predefined magnetic states. It also proposes a specific example of structures that can serve as nanoscale molecular logic gates composed by asymmetric bowtie-shaped GNFs units, which augment the special antiferromagnetic function through structural configuration of multi-bowtie-shaped GNFs. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:432 / 436
页数:5
相关论文
共 51 条
[31]   Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges [J].
Niimi, Y ;
Matsui, T ;
Kambara, H ;
Tagami, K ;
Tsukada, M ;
Fukuyama, H .
PHYSICAL REVIEW B, 2006, 73 (08)
[32]   Tailoring the performance of graphene-based supercapacitors using topological defects: A theoretical assessment [J].
Pak, Alexander J. ;
Paek, Eunsu ;
Hwang, Gyeong S. .
CARBON, 2014, 68 :734-741
[33]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[34]   Epitaxial co-deposition growth of CaGe2 films by molecular beam epitaxy for large area germanane [J].
Pinchuk, Igor V. ;
Odenthal, Patrick M. ;
Ahmed, Adam S. ;
Amamou, Walid ;
Goldberger, Joshua E. ;
Kawakami, Roland K. .
JOURNAL OF MATERIALS RESEARCH, 2014, 29 (03) :410-416
[35]   Magic moments [J].
Ramirez, AP .
NATURE, 2003, 421 (6922) :483-483
[36]   NEW COUMARIN DYES WITH RIGIDIZED STRUCTURE FOR FLASHLAMP-PUMPED DYE LASERS [J].
REYNOLDS, GA ;
DREXHAGE, KH .
OPTICS COMMUNICATIONS, 1975, 13 (03) :222-225
[37]  
Ritter KA, 2009, NAT MATER, V8, P235, DOI [10.1038/NMAT2378, 10.1038/nmat2378]
[38]   Shedding Light on the Crystallographic Etching of Multi-Layer Graphene at the Atomic Scale [J].
Schaeffel, Franziska ;
Warner, Jamie H. ;
Bachmatiuk, Alicja ;
Rellinghaus, Bernd ;
Buechner, Bernd ;
Schultz, Ludwig ;
Ruemmeli, Mark H. .
NANO RESEARCH, 2009, 2 (09) :695-705
[39]   Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials [J].
Shibayama, Y ;
Sato, H ;
Enoki, T ;
Endo, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (08) :1744-1747
[40]  
Shiraishi M, 2014, WOODH PUB SER ELECT, P324, DOI [10.1038/nnano.2014.214, 10.1533/9780857099334.3.324]